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Abstract  

Climate change and human pressures are changing the global distribution and extent 

of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river 

network area. IRES are characterized by periods of flow cessation, during which channel 

substrates accumulate and undergo physico-chemical changes (preconditioning), and periods 

of flow resumption, when these substrates are rewetted and release pulses of dissolved 

nutrients and organic matter (OM). However, there are no estimates of the amounts and 

quality of leached substances, nor is there information on the underlying environmental 

constraints operating at the global scale. We experimentally simulated, under standard 

laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms 

collected during the dry phase across 205 IRES from five major climate zones. We 

determined the amounts and qualitative characteristics of the leached nutrients and OM, and 

estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate 

characteristics in relation to selected environmental variables and substrate characteristics. 

We found that sediments, due to their large quantities within riverbeds, contribute most to the 

overall flux of dissolved substances during rewetting events (56-98%), and that flux rates 

distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate 

contributed most to the areal fluxes. The largest amounts of leached substances were found in 

the continental climate zone, coinciding with the lowest potential bioavailability of the 

leached organic matter. The opposite pattern was found in the arid zone. Environmental 

variables expected to be modified under climate change (i.e. potential evapotranspiration, 

aridity, dry period duration, land use) were correlated with the amount of leached substances, 

with the strongest relationship found for sediments. These results show that the role of IRES 

should be accounted for in global biogeochemical cycles, especially because prevalence of 

IRES will increase due to increasing severity of drying events. 
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INTRODUCTION 

Human activities and climate change cause global-scale alterations in the flow 

regimes of rivers, which in turn are tightly linked to biogeochemical processes such as carbon 

processing (Arnell & Gosling, 2013; Tonkin, Merritt, Olden, Reynolds, & Lytle, 2018; 

Bernhardt et al., 2018). Currently, more than half of the global river network length is 

represented by intermittent rivers and ephemeral streams (IRES) - systems that cease to flow 

at some point in time and space (Acuña et al., 2014; Datry, Larned, & Tockner, 2014). 

Anthropogenic pressures alter the hydrological regime of perennial rivers towards 

intermittency, although the opposite can also happen at some locations. On the one hand, 

flow regulation, water diversion, groundwater extraction, and land-use alteration promote the 

prevalence of river flow intermittence both spatially and temporally (Pekel, Cottam, Gorelick, 

& Belward, 2016; Datry, Bonada, & Boulton, 2017). On the other hand, naturally intermittent 

rivers turn permanent due to effluents from wastewater treatment plants or artificially 

enhanced discharge required for livestock and irrigation (Chiu, Leigh, Mazor, Cid, & Resh, 

2017).  

From a biogeochemical perspective, IRES function as punctuated biogeochemical 

reactors (Larned, Datry, Arscott, & Tockner, 2010; von Schiller et al., 2017). During the dry 

phase, a diversity of substrates (leaf litter, epilithic biofilms, wood, animal carcasses, 

sediments) accumulate on the dry riverbed (Datry et al., 2018). Absence of water reduces 

decomposition rates of substrates (for particulate organic matter), while sunlight and intense 

desiccation alter their physico-chemical properties, a process known as preconditioning 

(Taylor & Bärlocher, 1996; Bruder, Chauvet, & Gessner, 2011; Dieter et al., 2011; Abril, 

Muñoz, & Menéndez, 2016; del Campo & Gómez, 2016). When surface water returns after 

drying events, accumulated organic and inorganic substrates are rewetted and can be 

transported downstream (Obermann, Froebrich, Perrin, & Tournoud, 2007; Corti & Datry, 
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2012; Rosado, Morais, & Tockner, 2015). Rewetting during the so-calle  “f rst flus  e ents” 

also leads to massive pulsed releases of dissolved nutrients and dissolved organic matter 

(DOM) (Gessner, 1991; von Schiller et al., 2011; Arce, Sánchez-Montoya, & Gómez, 2015). 

Importantly, concentrations of the released substances may exceed baseflow values in 

perennial watercourses by several orders of magnitude and can thus substantially contribute 

to annual fluxes (Skoulikidis & Amaxidis, 2009; Corti & Datry, 2012; Bernal, von Schiller, 

Sabater, & Marti, 2013). Released nutrients and DOM fuel primary producers and 

heterotrophic organisms, alter nutrient and carbon cycling, and thus influence stream 

ecosystem metabolism (Baldwin & Mitchell, 2000; Austin et al., 2004; Jacobson & Jacobson, 

2013; Fellman, Petrone, & Grierson, 2013; Skoulikidis et al., 2017b). Furthermore, 

eutrophication and hypoxia can be a consequence of excess nutrient transport to downstream 

lakes, reservoirs and coastal areas, where the mortality of fish and other aquatic organisms 

can increase (Bunn, Thoms, Hamilton, & Capon, 2006; Hladyz, Watkins, Whitworth, & 

Baldwin, 2011; Whitworth, Baldwin, & Kerr, 2012; Datry et al., 2016). 

Despite their widespread distribution and distinct role in biogeochemical cycling, 

IRES are notably missing in current analyses of global carbon budgets and other 

biogeochemical processes such as cycling of nutrients and DOM (Datry et al., 2018). Still, 

research on IRES is based primarily on studies spanning fine spatial extents (Leigh et al., 

2016), which limits our understanding of their roles in ecosystem processes at the global 

scale (Datry et al., 2014; von Schiller, Bernal, Dahm, & Martí, 2017; Skoulikidis et al., 

2017a, but see Soria et al., 2017; Datry et al., 2018). The contribution of IRES particularly to 

biogeochemical processes must be understood and quantified to correctly estimate carbon and 

nutrient fluxes. Studies indicating altered distribution of IRES in the future due to climate 

change (e.g., Milly, Dunne, & Vecchia, 2005) also emphasizes the need to adjust future river 

monitoring and conservation strategies.    
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The amounts and quality of dissolved compounds released from IRES upon rewetting, 

a process referred to as leaching (e.g., Nykvist, 1963; Gessner, 1991), depends primarily on 

the physico-chemical characteristics and amounts of substrates accumulated on riverbeds. 

Leachates from leaf litter, the most abundant form of coarse particulate organic matter 

(CPOM) accumulated in dry riverbeds (Datry et al., 2018), are rich in dissolved organic 

carbon (DOC; up to 39% of the leaf bulk carbon content) including soluble sugars, carbonic 

and amino acids, phenolic substances, proteins, and inorganic nutrients (e.g., phosphorus, 

nitrogen, potassium) (Nykvist, 1963; Gessner, 1991; Bärlocher, 2005; Harris, Silvester, Rees, 

Pengelly, & Puskar, 2016). Likewise, leaching from rewetted sediments of IRES releases 

large amounts of inorganic nitrogen (e.g., Tzoraki, Nikolaidis, Amaxidis, & Skoulikidis, 

2007; Ostojic et al., 2013; Arce, Sánchez-Montoya, Vidal-Abarca, Suárez, & Gómez, 2014; 

Merbt, Proia, Prosser, Casamayor, & von Schiller, 2016). Furthermore, riverbeds can be 

covered by biofilm mats (hereafter referred to as “b of lm”), compose  of m croor an sms 

(algae, bacteria, fungi) embedded in a matrix of extracellular polymeric substances (Sabater, 

Timoner, Borrego, & Acuña, 2016), whose remnants can often be seen even during the dry 

phase. B of lm’s leac ate may contain highly bioavailable organic carbon and nitrogen due to 

the accumulation of exudates and products of cell lysis (Schimel, Balser, & Wallenstein, 

2007; Romaní et al., 2017). Physico-chemical characteristics of substrates accumulated 

within IRES during the dry phase as well as amounts of leached substances depend on 

environmental variables that act at both regional (climate influenced) and local scales (e.g., 

influenced by river geomorphology, land use, riparian canopy cover) (Aerts, 1997; Datry et 

al., 2018; Catalan, Obrador, Alomar, & Pretus, 2013; von Schiller et al., 2017).  
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The quantity and quality of dissolved substances leached from the channel beds of 

IRES during the rewetting process, and the environmental variables associated with variation 

in differences in leached amounts, has been little studied. However, such knowledge is 

essential for disentangling the role of IRES in biogeochemical processes under different 

scenarios of climate change. In the present study, we experimentally simulated pulsed 

rewetting events under controlled standardized laboratory conditions using substrates 

collected from 205 IRES located in 27 countries in five continents and covering five major 

climate zones. We aimed (i) to compare the amounts of nutrients and DOM, and the quality 

of DOM leached from leaf litter, biofilms, and bed sediments accumulated on dry IRES beds 

at the global scale as well as in different climate zones, (ii) to explore and identify the 

environmental variables related to the variability in leached amounts, and (iii) to estimate the 

potential area-specific fluxes (per m
2
 of bed surface) of nutrients and OM leached during 

pulsed rewetting events. We focused on common nutrient and DOM species, which control 

essential ecosystem processes such as primary production and microbial respiration (Elser et 

al., 2007; Conley et al., 2009). Furthermore, we estimated the size categories and optical 

properties of released DOM as proxies of its quality.  

Our first hypothesis was that in comparison with mineral substrates (sediments), 

leachates from organic substrates (biofilms and leaves) contain higher amounts of nutrients 

and DOM relative to the content of the respective element (carbon or nitrogen) in the 

substrate. In addition, substrates of organic origin also have a higher variability in the 

composition of leachates due to a higher species richness and compositional heterogeneity. 

Within our second hypothesis we expected that significant differences in the amounts of 

leached substances are observed among substrates sampled across different climate zones, 

with the highest amounts of nutrients and OM leached in the continental climate zone 

compared to others due to high litter quality (Boyero et al., 2017). In combination with the 
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highest mass of litter observed (Datry et al., 2018) we expect this to result in the highest 

nutrient and OM fluxes from a representative area of dry river bed in the continental zone. 

Finally, we hypothesized that quantitative and qualitative composition of leachates will 

depend on substrate characteristics, which in turn are expected to correlate with 

environmental variables sampled at the study sites. 

 

MATERIALS AND METHODS 

Sampling sites, substrate collection and environmental variables  

A total of 205 IRES, located in 27 countries and spanning five major Köppen-Geiger 

climate classes, were sampled during dry phases, following the standardized protocol of the 

1000 Intermittent Rivers Project (Datry et al., 2016,  

http://1000_intermittent_rivers_project.irstea.fr, Figure 1). Five major climate zones 

were assigned to sites based on their location: arid (merging Köppen-Geiger classes BSh, 

BSk, BWh and BWk, n=29), continental (Dfb, Dfc, n=13), temperate (Cfa, Cfb, Csa, Csb, 

Cwa, n=142), tropical (As, Aw, n=19) and polar (ET, n=1). Differences in sample size 

resulted from the occurrence of IRES and accessibility of sampling sites by researchers 

involved in the sampling campaign. A larger sample size increases the variability of the 

results while increasing the precision of the mean/median values, i.e. reducing the variability 

of the sample mean/median. This needs to be considered in data evaluation and interpretation. 

For each river, one reach was selected and sampled for leaf litter (further referred as leaves), 

epilithic biofilms (biofilms) and sediments (details on material collection are provided in 

Supplementary Information). After collection, field samples were further processed in the 

laboratory. Leaves and biofilms were oven-dried (60 °C, 12 hours) to achieve constant mass, 

reduce variability from fluctuations in water content (Boulton & Boon, 1991), and ensure 

cellular death of the leaf tissue. Oven-drying mainly affects volatile and oxidizable 
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compounds, which were not in the focus of our study. However, oven-drying may increase 

the amount of leached substances from leaves and biofilms (e.g. Gessner & Schwoerbel, 

1989). Bed sediments were sieved (2 mm) and air-dried for one week. The dry material was 

placed in transparent plastic bags, shipped to laboratories responsible for further analyses (see 

Acknowledgements), and stored in a dry and dark room until processing and analysis. 

Nine environmental variables were selected to analyze their association with leachate 

characteristics (Table 1). The variables were selected based on a conceptual understanding of 

the leaching process. As proxies of a regional-scale influence, we used the aridity index and 

potential evapotranspiration (PET) extracted from the Global Aridity and PET database (for 

details see Datry et al., 2018). River width, riparian cover (%, visually estimated as the 

proportion of river reach covered by vegetation), dry period duration (estimated either with 

water loggers or repeated observations, precision: two weeks), altitude, and land cover (%) of 

pasture, forest, and urban areas within the catchment were selected as proxies of local 

influence. These local-scale parameters (apart from land cover) were recorded in situ by 

participants of the 1000 Intermittent Rivers Project. Land cover was derived using GIS maps. 

For details on the environmental variables sampled and substrate characteristics, see 

Supplementary Information, Table S1. 

 

Leaching experiments 

Rewetting was simulated in the laboratory by exposing dried substrates to leaching 

solutions as a proxy for their exposure in situ to river water during first flush events. Leaves 

were cut into approximately 0.5 cm × 0.5 cm pieces and homogenized in glass beakers using 

a spoon. If the sample contained conifer-needles (approximately 30% of samples), these were 

cut into fragments of approximately 4 ± 0.5 cm length. From each sample, 0.5 ± 0.01 g were 

weighed, put into 250-mL dark glass bottles and filled with 200 mL of a 200 mg L
-1

 NaCl 
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leaching solution to mimic ionic strength of the stream water and thus to avoid extreme 

osmotic stress on m croor an sms’ cells upon rewett n  (e.g., McNamara & Leff, 2004). For 

biofilms, sub-samples homogenized as previously described were weighed to 1 ± 0.01 g, and 

placed in dark glass bottles filled with 100 mL of the leaching solution. Sediment samples 

(20-60 g) were homogenized in the same way, weighed to 10 ± 0.1 g, transferred into 250-

mL dark glass bottles, and filled with 100 mL of the leaching solution. The selected mass of 

each substrate in relation to the volume of leaching solution aimed on maximizing the 

leaching yield by avoiding high concentrations of dissolved substances that could lead to 

saturation so that substances cannot dissolve further.  

Preliminary investigations of the effect of temperature and time on leaching (tested at 

temperatures of 4 and 20 ºC and leaching durations of 4 and 24 hours, corresponding to 

temperatures and durations most commonly applied in leaching studies due to the rapid 

nature of the leaching process, data not shown), indicated selection of a constant temperature 

of 20 °C and leaching duration of 4 hours. The selected duration reflects the time when most 

of the dissolved substances are leached and minimizes microbial modification of leachates 

upon rewetting. Bottles containing substrates and the leaching solution were capped and 

placed on shaking tables (100 rpm) in a climate chamber in darkness. Two subsamples 

(technical replicates) of each substrate type from each sampling site were leached whenever 

enough material was available (70% of the samples). Otherwise a single technical replicate 

was used.  

After four hours, the leachate from the bottle was filtered through 8.0 µm cellulose 

acetate and 0.45 µm cellulose nitrate membrane filters (both Sartorius, AG Göttingen, 

Germany) which were pre-rinsed with 1 L of de-ionized water per filter, using a vacuum 

pump. Filtered leachates were collected in 200-mL glass flasks pre-rinsed with 50 mL of the 

filtered leachate. If sufficient substrate was available, two subsamples were leached to cover 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

possible heterogeneity of substrate composition, but combined later in one glass flask to have 

one representative composite sample for further analysis. Leachates were then transferred 

into HCl pre-washed 25-mL plastic bottles prior to further chemical analyses (see details in 

Supplementary Information).  

 

Physical and chemical characterization of substrates and leachates 

Organic carbon (C) and total nitrogen (N) content of substrates (%C and %N, 

respectively) were determined using elemental analyzers (for details see Supplementary 

Information). Sediment texture descriptors (fractions (%) of sand, silt, clay and their mean 

and median particle size) were determined with a laser-light diffraction instrument (see 

Supplementary Information). 

Using standard analytical methods (for details see Supplementary Information) we 

analyzed the following substances in leachates: DOC, soluble reactive phosphorus (SRP), 

ammonium (N-NH4
+
), nitrate (N-NO3

-
), and phenolics. 

The concentration of nutrients and OM in leachates was used to calculate leached 

amounts per gram of dry substrate (total leached amounts) and per gram of the respective 

element, C or N, in the substrate (relative leached amounts). Areal fluxes upon rewetting 

were calculated from total leached amounts and mass of substrate accumulated in the field.  

 

Characterization of DOM quality 

To determine concentrations of dissolved organic nitrogen (DON) and the 

composition of DOM based on size categories, we used size-exclusion chromatography 

(SEC) with organic carbon and organic nitrogen detection (LC-OCD-OND analyzer, DOC-

Labor Huber, Karlsruhe, Germany) (details are provided in Supplementary Information). A 

subset of leaves, biofilms, and sediments sampled from 77 rivers was selected randomly to 
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cover all climate zones. We selected limited samples due to the time-consuming nature of this 

analysis (2.5 h per sample). Leachates produced from these substrates (as described 

previously) were selected for further analysis, in cases where concentrations of DOC in 

leachates did not exceed the measuring limits of the chromatograph (the final set included 

leachates from 52 leaf, 11 biofilm and 77 sediment samples). We classified DOM into three 

major sub-categories: (i) biopolymers (BP), (ii) humic or humic-like substances (HS) 

including building blocks (HS-like material of lower molecular weight), and (iii) low 

molecular-weight substances (LMWS). The concentration of each category was normalized 

to the total DOC concentration, and is thus given as the fraction (%) of the total DOC. 

To obtain indices of DOM quality (for details see Fellman, Hood, & Spencer, 2010; 

Hansen et al., 2016), we simultaneously determined absorbance spectra of DOM and 

fluorescence excitation-emission matrices (EEM) using a spectrofluorometer (Horiba Jobin 

Yvon Aqualog, Horiba Scientific Ltd, Kyoto, Japan). Specific UV absorbance values were 

calculated at a wavelength of 254 nm (SUVA254), which are correlated with aromatic carbon 

content (Weishaar et al., 2003), by dividing decadal absorbance by DOC concentration (mg C 

L
-1

) and cuvette length (in m). The fluorescence index (FI), humification index (HIX), and 

fres ness  n ex (β:α) were calculated from fluorescence EEM for all DOM samples (for 

details see Supplementary Information). The FI indicates whether DOM is derived from 

terrestrial sources (e.g., plant or soil, FI value ~1.4) or microbial sources (e.g., extracellular 

release, leachates from bacterial and algal cells lysis, FI value ~1.9) (McKnight et al., 2001). 

The HIX indicates the extent of DOM humification (degradation) (Zsolnay, Baigar, Jimenez, 

Steinweg, & Saccomandi, 1999; Ohno, 2002), with HIX<0.9 indicating DOM derived from 

relatively recent (plant and algae) inputs (Hansen et al., 2016). The freshness index, i.e. the 

ratio of autoc t onous (β)  ersus allochthonous (α) DOM, indicates dominance by recently 

produced or decomposed DOM (values ~0.6-0.7 indicate more decomposed allochtonous 
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DOM) (Parlanti, Worz, Geoffroy, & Lamotte, 2000; Wilson, & Xenopoulos 2008). 

Excitation-emission matrices were corrected for Raman scatter, Rayleigh, and inner filter 

effects before calculation of the fluorescence indices (Parlanti et al., 2000; Mcknight et al., 

2001). 

 

Calculation of the total areal flux of nutrients and OM  

Total areal flux of nutrients and OM per square meter of the riverbed was calculated 

based on information about the mass of leaves and biofilm accumulated on the dry riverbeds 

(Datry et al., 2018), as well as on average mass of sediment per square meter of surface area. 

For the latter, we assumed an average density of sediments of 1.6 g cm
-3

 (Hillel, 1980) and 

the depth of the sediments potentially affected by a rewetting event to be 10 cm (see Merbt et 

al., 2016), which also corresponds to the depth of the sampled sediment layer according to the 

sampling protocol. We acknowledge that this assumption should be considered with caution 

as high variability in sediment densities can be found in nature (e.g., Boix-Fayos, Nadeu, 

Quiñonero, Martínez-Mena, Almagro, & de Vente, 2015) and contribution of sediment layers 

within 10 cm depth to leaching also may differ (e.g., Merbt et al. 2016). 

Overall, the total areal flux is the sum of nutrients and OM leached from all substrates 

found within the dry riverbed. To execute a global comparison of total areal fluxes, samples 

from 157 reaches were selected for which a complete set of nutrients and OM concentrations 

(except DON) were available. Reaches for which one or more chemical measurements were 

identified as technical outliers after exploration with boxplots and Cleveland dotplots (Zuur, 

Ieno, & Elphick, 2010) were excluded. We assume these calculations reflect spatial 

differences in surface fluxes of nutrients and OM across a range of sampled IRES.  
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Statistical analyses 

Differences in the total and relative leached amounts of nutrients and DOM from 

different substrates (Hypothesis 1), as well as between substrates collected in different 

climate zones and estimated fluxes from different climate zones (Hypothesis 2), were 

assessed using Kruskal-Wallis non-parametric tests followed by Dunn’s tests with Bonferroni 

correction for post-hoc comparisons. The level of significance was set to 0.0167 to account 

for multiple comparisons among the three substrates and to 0.0083 to account for 

comparisons among the four main climate zones (calculated as 0.05/[k(k-1)/2], where k - 

number of groups) (Dunn, 1964). The polar climate zone was excluded from the comparison 

as there was only one sampling location in this category. Biofilm leachates were excluded 

from the cross-climate comparison as the majority of samples were taken in the temperate 

zone (35 out of 41 samples). Variability in leached amounts (Hypothesis 1) was assessed 

based on interquartile difference (quartile three of data distribution minus quartile one) 

expressed in percentages. This measure of variability accounts for differences in data 

distributions of nutrients and DOM amounts leached from different substrates and facilitates 

comparison. 

In order to identify the environmental variables and substrate characteristics driving 

the quantitative (amounts of nutrients and OM) and qualitative (DOM quality) characteristics 

of the leachates partial least squares (PLS) regression models were applied (Wold, Sjöstrom, 

& Eriksson, 2001). This approach allows exploration of the relationship between collinear 

data in matrices X (independent variable) and Y (dependent variable). An overview of the 

components to be included in the models is given in Table 1. Performance of the model is 

expressed by R
2
Y (explained variance). The influence of every X variable on the Y variable 

across the extracted PLS components (latent vectors that explain as much as possible of the 

covariance between X and Y) is summarized by the variable influence on projection (VIP) 
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score (Table 3). The VIP scores of every model term (X-variables) are cumulative across 

components and weighted according to the amount of Y-variance explained in each 

component (Eriksson, Johansson, Kettaneh-Wold, & Wold, 2006). X-variables with VIP > 1 

are most influential on the Y-variable, while variables with 1 > VIP > 0.8 are moderately 

influential. Values negatively correlated with the Y-variable were multiplied by a coefficient 

of negative one to facilitate interpretation. Data were transformed prior to analyses to meet 

the assumptions of normal distribution and homoscedasticity (Table 1). 

In order to partition the variance in quantitative and qualitative characteristics of 

nutrients and DOM explained by different groups of variables (environmental variables, 

substrate characteristics, and the effect of environmental variables through their effect on 

measured substrate characteristics), we used the approach suggested in Borcard, Legendre, 

& Drapeau (1992) (Figure 2). The following PLS-regression models were run to distinguish 

fractions of explained variance in the quantitative/qualitative characteristics of the leachates: 

- Fraction [a+b] – explained by substrate characteristics; 

- Fraction [b+c] – explained by environmental variables; 

- Fraction [a+b+c] – explained by environmental variables and measured 

substrate characteristics. 

From each PLS-regression model, the explained variance R
2
Y was calculated and 

used to calculate the fraction of variance explained by each set of predictors separately 

(Borcard et al., 1992). For the PLS regression analysis, we selected the complete set of 

variables for which the required data (all predictors and response variables, Table 1) were 

available. We ran partitioning of variance for the set of samples on the global scale and 

individually for each climate zone. For biofilms, the analysis was done for samples of the 

temperate zone only because of the limited number of samples from other climate zones. 
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All statistical analyses were performed in R 3.2.2 (R Core Team 2017), except for the 

PLS analysis which was conducted using XLSTAT software (XLSTAT 2017, Addinsoft, 

Germany). 

 

RESULTS 

Leached amounts of nutrients and DOM species 

Total and relative leaching rates 

The total leached amounts (mg g
-1

 dry mass) of nutrients (except N-NO3
-
) and DOM 

were highest for leaves, followed by biofilm, and sediments (Figure 3; Table S2). The 

leached amounts of N-NO3
-
 were highest for biofilms (Kruskal-Wallis test, χ

2 
=

 
15.8, d.f. = 2, 

p < 0.0001; Dunn’s test for multiple comparison, p<0.0001), and no significant difference 

was found between leaves and sediments (Dunn’s test, p = 0.3). Leached amounts of DON 

from leaves and biofilms were not significantly different (Kruskal-Wallis test, χ
2 

=
 
105.7, d.f. 

= 2, p < 0.0001; Dunn’s test, p = 0.2). 

The total leached amounts of nutrients and DOM from leaves and biofilms decreased 

in a similar sequence: DOC > phenolics > DON > SRP > N-NH4
+ 

> N-NO3
- 
(based on median 

values). The total leached amounts from sediments decreased in the following order: DOC > 

phenolics > N-NO3
- 
>N-NH4

+ 
≈ DON > SRP (Table S2). 

The relative leached amounts of DOC and phenolics (mg g
-1 

C) and DON (mg g
-1

 N) 

were highest for leaves, followed by biofilms and sediments (Figure 3; Table S2). However, 

there were no significant differences for the amounts of DON between leaves and biofilm 

leachates (Kruskal-Wallis test, χ
2 

=
 
51.6, d.f. = 2, p < 0.0001; Dunn’s test, p = 0.8), nor for 

phenolics between biofilms and sediments (Kruskal-Wallis test, χ
2 

=
 
265.4, d.f. = 2, p < 

0.0001; Dunn’s test, p = 0.2). Relative leached amounts of N-NH4
+
 were highest for biofilms, 

followed by leaves and bed sediments, with a significant difference between leaves and 
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sediments (Kruskal-Wallis test, χ
2 

=
 
265.4, d.f. = 2, p < 0.0001; Dunn’s test, p < 0.001). For 

N-NO3
-
, relative leached amounts decreased significantly from sediments to biofilms and 

leaves (Kruskal-Wallis test, χ
2 

=
 
204.4, d.f. = 2, p < 0.0001; Dunn’s test, p < 0.001; Figure 3; 

Table S2). 

For all substrates, we observed large variations in the total and relative leached 

amounts of nutrients and DOM (Figure 3, Table S2). The highest variability in total and 

relative leached amounts of DOC, N-NO3
-
, and SRP was observed for biofilms, which was up 

to 10 times higher than for sediments and leaves.. Sediments had the highest variability in the 

total leached amounts of DON and relative leached amounts of N-NH4
+
 and phenolics. For 

leaves, the highest variability was found in the relative leached amounts of DON.   

 

Qualitative DOM characterization 

Values of SUVA254, a proxy for aromatic carbon content, decreased from sediments 

and leaves to biofilms, with no significant difference between sediments and leaves (Kruskal-

Wallis test, χ
2 
=

 
55.8, d.f. = 2, p < 0.0001; Dunn’s test, p = 0.4) (Figure 4; Table S3). 

Ratios of DOC:DON and phenolics:DOC were highest in leachates from leaves, while 

differences between sediments and biofilms were not statistically significant (Dunn’s test 

following a Kruskal-Wallis test, p = 0.8 and p = 0.06 respectively; Table S3). 

The β:α ratio indicated a prevalence of allochthonous DOM in leachates from all 

substrates. The proportion of allochthonous DOM was highest in leachates from biofilms, 

followed by sediments, then leaves, but there was no significant difference between biofilms 

and sediments (Kruskal-Wallis test, χ
2 

=
 
197.4, d.f. = 2, p < 0.0001; Dunn’s test, p = 0.4). The 

degree of DOM humification based on HIX values was highest for sediments followed by 

biofilms and leaves, with statistically significant differences among all substrates (Kruskal-

Wallis test, χ
2 

=
 
96.94, d.f. = 2, p < 0.0001; Dunn’s tests < 0.0001). Values of FI indicated the 
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presence of OM derived from terrestrial sources in all leachates, with no significant 

differences among substrates (Kruskal-Wallis test, χ
2 

=
 
6.3, d.f. = 2, p = 0.043). 

In all leachates, HS was the dominant fraction of DOM followed by BP and LMWS 

(Figure 5; Table S3). The highest proportion of HS in DOM was in sediment leachates, while 

between leachates of leaves and biofilms the percentage of HS did not significantly differ 

(Kruskal-Wallis test, χ
2 

=
 
29.9, d.f. = 2, p < 0.0001; Dunn’s test, p = 0.9). The highest 

percentage of LMWS was present in leaf leachates with the median twice as high as in 

sediments and biofilms. The highest percentage of BP was found in leachates from biofilms 

with the median values 2 and 6 times higher than in sediments and leaves, respectively. For 

LMWS and BP, the difference between biofilms and sediments was not statistically 

significant (Dunn’s test following a Kruskal-Wallis test, p = 0.7 and p = 0.06 respectively). 

 

Differences in amounts of leached substances and DOM quality across climate zones 

Cross-climate differences in amounts of leached substances and qualitative 

characteristics of DOM depended on the type of substrate (Table 2; Table S4). For leaves, a 

significant difference in the total leached amounts was observed only for N-NH4
+
 between 

continental and arid zones, as well as between continental and temperate zones (Dunn post-

hoc tests following a Kruskal-Wallis test, p < 0.0001, Table S4). All variables measured in 

leaves showed highest concentration in the continental zone, except for N-NO3
-
 (highest in 

the tropical zone) and DON (highest in the arid zone). For sediments, significant differences 

in leached amounts were found for all variables except phenolics (Kruskal-Wallis test, χ
2 

=
 

5.43, d.f. = 3, p = 0.143). In all cases, the highest total leached amounts were found in 

samples from the continental zone and the lowest in leachates from the arid zone (Table 2; 

Table S4). Leached amounts of nutrients and DOM from leaves and sediments from the 

temperate zone, the most commonly sampled zone in the study, followed leached amounts 
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found in the tropical zone, however, with no significant difference (Table 2; Table S4). The 

relative leached amounts did not differ significantly among climate zones for leaves or 

sediments (Table S4). 

Aromatic carbon content (a proxy used to access cross-climate differences in 

bioavailability) leached from leaves was not significantly different among climate zones 

(Kruskal-Wallis test, χ
2 

=
 
3.82, d.f. = 3, p = 0.28). For sediments, a statistically significant 

difference was found between samples from the arid and the continental zone (Dunn’s test, p 

= 0.003; Table S4), with leachates from the arid zone having lower aromaticity.  

 

Effects of environmental variables and substrate characteristics  

Effects on amounts of leached nutrients and DOM 

On a global scale, 25% of the variance in the amounts of nutrients and DOM leached 

from sediments could be explained by selected variables (fraction [a+b+c]), which was more 

than twice that for leaves (11%) (Figure 6a, b). For sediments, around 23% of the variance 

could be explained by the effect of substrate characteristics (fraction [a+b]), around 15% by 

the effect of environmental variables (fraction [b+c]), and 13% by the effect of environmental 

variables on substrate characteristics (fraction [b]) (Figure 6a). For leaves, the substrate 

characteristics and the environmental variables explained approximately an equal percentage 

of variance, 8 and 6% respectively, which was much lower than that explained for sediments. 

Environmental variables and substrate characteristics accounted for 3% of variance in the 

quantitative composition of leaf leachates. For both substrates, the most influential variables 

(VIP > 1) were C fraction, N fraction, PET, and in the case of leaves, C:N and pasture cover 

within the river catchment (Table 3).  
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For both sediments and leaves, the highest percentage of variance in amounts of 

leached nutrients and DOM was explained for the continental and tropical zones (59% and 

46% for sediments, 39% and 40% for leaves respectively, Figure 6a). Substances leached 

from sediments from these regions were explained mostly by the environmental variables and 

their effect on substrate characteristics. High VIP was found for the dry period duration, N 

fraction and textural classes (both zones), river width and forest cover (continental), PET, 

urban cover and fraction of C (tropical). In contrast, for leaves in these zones, most of the 

variance was explained by environmental variables alone and not by their effect on the 

substrates. Environmental variables with high VIP in these zones were PET and aridity (in 

both), river width and altitude (in the continental zone), as well as pasture cover and dry 

period duration (in the tropical zone) (Table 3).  

For the temperate zone, the results of variance partitioning were available for all 

analyzed substrates. Here, the total variance in leachates was best explained for biofilms 

(48%) followed by sediments (30%) and leaves (15%). In contrast to sediments and leaves, 

the variance of biofilm leachates was better explained by environmental variables (VIP>1 for 

aridity and altitude) than by substrate characteristics. 

 

Effects on qualitative characteristics of DOM 

For sediments and leaves, the percentage of variance that was explained for 

qualitative characteristics of DOM on the global-scale was much lower (around 7% for each 

of the substrates) than that for the amounts of leached substances (Figure 6b). The 

contribution of environmental variables, substrate characteristics and effect of environmental 

variables on substrate characteristics to the total variance was approximately equal (Figure 6). 

Influential variables with VIP > 1 were altitude and C fraction (for both substrates), PET and 

texture (for sediments), and river width and urban cover (for leaves). 
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For sediments, as in the case of amounts of leached substances, the variance across 

sampling sites was explained best in the tropical (58%) and continental (53%) zones, and was 

driven mainly by the environmental variables and their effect of substrate characteristics. 

Variables with VIP > 1 in both zones were sediment texture (fraction of silt and clay) and, 

additionally PET, aridity, and urban cover in samples from the tropical zone, and pasture and 

forest cover, riparian cover, aridity and dry period duration in samples from the continental 

zone (Table 3). For sediments in the arid zone, the explained variance was around 28% and 

the share of groups of variables that explained the observed variance was different. In 

particular, almost all variance explained by environmental variables was due to the effect of 

environmental variables on substrates (VIP > 1 for texture, %C, %N, and forest cover). This 

was the opposite for leaf leachates, where the variance was explained mainly by the effect of 

environmental variables alone (PET, aridity, and dry period duration).  

In samples from the temperate zone, variance of leachate quality was best explained 

for biofilms (27%) followed by leaves (13%), and sediments (6%) (Table 3). The same was 

found for the amounts of leached substances, where the explained variance for biofilms was 

due to the effect of environmental variables (PET and fraction of different land use types), 

and for leaves due to the effect of substrate characteristics (%C, %N). For sediments, the 

share of variance explained by the effect of substrate characteristics and the effect of 

environmental variables was approximately equal (VIP > 1 for sediment texture classes, river 

width, altitude). 

 

Estimated areal fluxes of nutrients and OM across IRES riverbeds 

Area-specific fluxes differed by two to four orders-of-magnitude among the sampled 

riverbeds, depending on the nutrient and OM species (Fig. S1, Table 4). Fluxes of DOC and 

SRP differed by two orders-of-magnitude and ranged for DOC from 3 to 163 g m
-2

 riverbed 
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surface (median: 15.2) and for SRP from 0.015 to 2.63 g m
-2

 (median: 0.12). Fluxes of N-

NH4
+ 

and phenolics spanned three orders-of-magnitude (N-NH4
+
: 0.009 to 6.67 g m

-2
, 

median: 0.27; phenolics: 0.012 to 35 g m
-2

, median: 1.39). N-NO3
- 
fluxes spanned the largest 

range, from 0.008 to 18.88 g m
-2

 (median: 0.59 g m
-2

). Overall, the released fluxes decreased 

in the following order: DOC > phenolics > N-NO3
- 
> N-NH4

+ 
> SRP. 

Major contributions to the areal fluxes from riverbeds were made by sediments: 

98±7% (mean±SD) for N-NO3
-
, 97±6% for N-NH4

+
, 86±19% for SRP, 85±20% for DOC, 

and 56±33% for phenolics. Leaves provided the second highest contribution to the total areal 

flux. In contrast to sediments and leaves, the relative contribution of biofilms to area-specific 

flux rates was very low for all substances (in average: < 0.1%), but slightly higher for N-NO3
-
 

(1.5±7%) (values above 100% or lower than 0% reflect deviation and not the real data). 

The highest fluxes were estimated from riverbeds in the continental zone (Table 4), 

whose areal flux of N-NH4
+ 

and phenolics was three times higher than that of the arid zone, 

four times higher for N-NO3
-
, and five times higher for SRP and DOC. For all nutrients and 

OM species, except phenolics (Kruskal-Wallis test, χ
2 

=
 
4.68, d.f. = 3, p = 0.2), the 

differences between continental and arid zones were statistically significant ( unn’s test, p < 

0.001 for all pairwise comparisons). Compared to the continental zone, a lower flux was 

found for DOC in temperate and tropical zones (Kruskal-Wallis test, χ
2 

=
 
24.8, d.f. = 3, p = 

0.003; Dunn’s tests p = 0.001 and p = 0.005 respectively) and SRP (Kruskal-Wallis test, χ
2 

=
 

20.02, d.f. = 3, p < 0.001; Dunn’s tests p = 0.001 and p = 0.004 respectively). The flux of N-

NH4
+ 

was lower in the temperate zone than in the continental zone (Kruskal-Wallis test, χ
2 

=
 

16.5, d.f. = 3, p < 0.001; Dunn’s test p = 0.006). 
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DISCUSSION 

Rewetting events in IRES in the context of global biogeochemical cycles 

Our globally comparable assessment of nutrient and DOM leaching in rewetted IRES 

shows that the quantity and quality of leached nutrients and DOM are substrate- and climate-

specific, with the highest amounts leached in continental climate and with sediments 

contributing most to the total areal flux from dry river beds. These data provide a basis on 

which to develop models of biogeochemical cycling in river networks including IRES. 

According to our first hypothesis, we found a high variability in the amount of 

leached substances and the quality of leachates from organic, but also from inorganic 

substrates, mainly as a consequence of inherent substrat properties and their modification 

during the drying period. Leaching from organic materials (leaves and biofilms) was 

relatively enriched in P versus N in contrast to sediments. Due to their higher mass within the 

riverbeds, sediments were the main contributors to the areal fluxes. Sediments leached high 

amounts of N-NO3
-
, the accumulation of which in dry riverbeds is promoted by aerobic 

conditions (Arce et al., 2014; Merbt et al., 2016; Amalfitano et al., 2008; Borken & Matzner, 

2009). Considering quality of leached DOM, we found that depending on the proportion of 

each substrate within the riverbed, different ecosystem processes can be affected. For 

example, leachates from biofilms with a high proportion of biopolymers may play a key role 

as sources of bioavailable DOM in IRES and are more likely to be retained within the 

riverbed upon rewetting (Romani, Vazquez, & Butturini, 2006; von Schiller et al., 2015). A 

high proportion of low molecular-weight substances leached from leaves suggests that such 

leachates can trigger ecosystem processes in downstream surface waters and groundwaters, as 

molecules of this size fraction can easily be transported through the hyporheic zone with 

limited immobilization (Romani et al., 2006). DOM leached from sediments was mainly of 

microbial origin, suggesting its high potential bioavailability (Schimel et al., 2007; Marxsen, 
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Zoppini, & Wilczek, 2010). Overall, we suggest that rewetting of sediments is key for 

understanding biogeochemical cycles in fluvial networks with IRES, and that leaves and 

biofilms can introduce regional variabilities in the global scale patterns depending on the 

accumulated amount of these substrates in the channel during the dry phase. Indeed, 

accumulation of plant litter on the dry riverbed ranges from 0 to 963 g m
-2

 depending on 

aridity, river width, catchment area, riparian cover, and drying duration (Datry et al., 2018 

and Table S1). In our study, accumulations of biofilms were very common in the temperate 

zone and ranged from 0.3 to 327 g m
-2 

(Table S1). 

We also found differences in the amounts of leached substances among climate zones, 

in accordance with our second hypothesis, but only for sediments. Initially, we expected 

cross-climate differences to be more pronounced for leaves due to climatic effects on 

vegetation composition and leaf litter quality (e.g. Aerts, 1997; Boyero et al., 2017), rather 

than for sediments whose composition is controlled mainly by geology and geomorphology. 

The absence of significant differences among climate zones for leaves could be explained by 

the considerable variability we observed among leaf material collected within climate zones, 

both in terms of species composition and drying history. Although we did not assess the site-

specific composition of riparian vegetation, previous studies indicated that up to 40% of 

variation in leaf traits at a given site can be explained by small-scale spatial and temporal 

environmental heterogenity in environmental factors such as hydrology and disturbance 

regime (Cornwell et al., 2008). 

High concentrations leached in the continental climate zone suggest that nutrient loads 

to freshwaters will increase with the projected increase in the extent of IRES in such regions. 

In the arid zone where terrestrial primary production is severely constrained by water 

availability (Austin et al., 2004), rewetting events are expected to stimulate stream ecosystem 

productivity not only due to water availability, but also because the potential bioavailability 
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of leachates is particularly high in this climate zone. However, despite a high potentional 

bioavailability of DOM, leachates from the arid zone were characterized by low amounts of 

nutrients, probably resulting from leaf traits that reflect adaptation to dry conditions 

(Cornwell et al., 2008).  

Comparison of fluxes from 1 m
2
 of IRES within the 4-hours duration of the 

experiment with the annual flux from 1 m
2 

of
 
watersheds (Table S5) showed that rewetting 

events in IRES represent a significant pulse of dissolved substances in ecosystems, including 

some estimates exceeding known annual fluxes from watersheds with perennial rivers 

(although differences in the size of watersheds and stream area of IRES should be 

accounted). While there can be some confounding factors between laboratory conditions and 

those that occur in a natural setting (i.e. intensity and duration of rewetting events, ambient 

temperature, increased leaching caused by oven-drying (Gessner & Schwoerbel, 1989), 

presence of terrestrial plants in dry riverbeds (Gómez, Arce, Sánchez, & del Mar Sánchez-

Montoya, 2012), the results of our experiment across various climate regions indicate that 

rewetting of IRES produces a pulsed release of dissolved substances. Decomposition of 

substrates accumulated in IRES, and thus carbon turnover, are affected by drying-rewetting 

cycles (Fierer & Schimel, 2002). Given the predicted increase in the duration of droughts, the 

exacerbation of extreme low-flow conditions, and the intensity of storm events (Huntington, 

2006; IPCC, 2014; De Girolamo, Bouraoui, Buffagni, Pappagallo, & Lo Porto, 2017), the 

results of this study emphasize the need to integrate IRES in global carbon cycles and 

budgets, from which they are currently excluded (Raymond et al., 2013; although see Datry 

et al., 2018).  
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Environmental variables correlated with release of nutrients and OM  

Environmental variables that are prone to be affected by climate change (namely PET, 

aridity, dry period duration, land-use) correlated with amounts and quality of leachates, 

particularly for sediments. For leaves, these correlations were less pronounced, suggesting 

that leaching may be affected by substrate characteristics other than those examined here. 

Characteristics such as toughness and content of secondary metabolites in substrates could 

have affected leaching through the effect on their mass loss during the dry phase and 

simulated rewetting, and on activity of microbial community in leachates (e.g., Pérez-

Harguindeguy et al., 2000; Ristock et al., 2017). Latitude, although not considered in the 

study, may also be responsible for the unexplained variance given that litter quality generally 

increases with latitude (Boyero et al., 2017). 

 

Amounts of leached substances from both leaves and sediments were correlated with 

PET. This variable is expected to be intensified in the future (Milly & Dunne, 2016) and will 

most likely lead to fluctuations in moisture conditions in dry riverbeds. Low moisture level 

reduces litter decomposition and C consumption, thereby promoting the release of DOM 

upon rewetting (Gessner 1991, Aerts et al., 1997; Bruder et. al., 2011; Abril et al., 2016) and 

hence increasing the probability of negative consequences for stream ecosystems such as 

blackwater events leading to hypoxia (Hladyz et al., 2011). 

 

Differences among climate zones in terms of correlations of environmental variables 

with amounts of leached substances indicate that climate change can have different effects on 

IRES in different geographical regions. For example, in the arid zone, where IRES are 

usually characterized by open canopy (Steward et al., 2012), aridity and percentage of 

riparian vegetation best explained the variance in sediment leachates. Inputs of riparian 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

vegetation litter onto the dry riverbeds and its subsequent decomposition, can represent an 

additional input of nutrients to sediments in the arid zone areas (Abril et al., 2016), where 

soils generally contain less carbon and nitrogen compared to the continental zone (Table S1 

and Delgado-Baquerizo et al., 2013). Changes in land-use (particularly, in the percentage of 

pasture cover at the global scale as well as within invidual climate zones exept continental) 

were correlated with the amount of leached substances from leaves, potentially through 

modifying the composition of plant material accumulated in beds of IRES. This suggests that 

modification of land use in the cathcments with IRES can also affect their contribution to 

nutrient load due to changes in the composition of CPOM accumulating in dry riverbeds.  

 

Although dry period duration is an important factor affecting the amounts and quality 

of litter accumulations in IRES (del  Campo & Gómez, 2016; von Schiller et al., 2017), we 

found its influence on the variance in leachates only in continental and tropical zones. This 

indicates that during the dry phase materials with different drying history (as affected by 

different climates) and potential to leach nutrients and OM can accumulate in IRES. This also 

suggests that dry period duration cannot invariably be used as a master proxy to assess 

potential impacts of nutrient loading from IRES upon rewetting. Under field conditions, other 

factors such as severity and timing of a rewetting event as well as presence/absence of plant 

material growing in dry channels can affect nutrient fluxes from riverbeds, and the fate of 

nutrients in ecosystems, as well as potential ecosystem impacts (e.g. eutrophication, mass 

mortality of aquatic organisms) in downstrean recieving waters and groundwater (Baldwin & 

Mitchell, 2000; Ocampo, Oldham, Sivapalan, & Turner, 2006; Cavanaugh, Richardson, 

Strauss, & Bartsch, 2006; Hladyz et al., 2011; Bernal et al., 2013). Substrate moisture content 

and variability in associated microbial communities can potentially be responsible for the 

unexplained part of the variance in the leachates, due to their effect on decomposition rates of 
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accumulated CPOM, nutrient processing in sediments, release of DOM upon rewetting, and 

its modification by microbial communities (McIntyre, Adams, Ford, & Grierson, 2009; 

Dieter, Frindte, Krüger, & Wurzbacher, 2013; Arce et al., 2015; Abril et al., 2016; Meisner, 

Leizeaga, Rousk, & Bååth, 2017).  

 

Implications for freshwater ecosystems and future research 

We identified IRES to function as pulsed biogeochemical reactors (sensu Larned et 

al., 2010) at a global scale even though the experiments were conducted under laboratory 

conditions and magnitudes of leached substances may differ in the natural environment. Our 

data serve also as a basis for further upscaling and modelling of the processes observed in the 

laboratory to address ecological implications of rewetting events at catchment scales. 

Potential implications for the functioning of rivers could be determined by the effect of 

leached substances on the degree of nutrient limitation of microorganisms downstream, and 

therefore community composition (Demi, Benstead, Rosemond, & Maerz, 2018) as well as 

on the fate of refractory substances and intensification of their decomposition through the so-

called ‘priming effect’ (Guenet, Danger, Abbadie, & Lacroix, 2010). The results of our study 

support the recent call for developing effective strategies for the management of IRES to 

avoid negative consequences for downstream ecosystems caused by excessive nutrient and 

OM load.  
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Figure 1 Location of the sampling sites (N=205) across five climatic zones. Climate zones 

according to Köppen-Geiger classes are marked with different colors. 

 

Figure 2 Variance partitioning among variables that influence leaching of nutrients and 

organic matter from substrates accumulated in intermittent rivers and ephemeral streams* 

[a+b] – effect of the substrate characteristics on leachate characteristics; 

[b+c] – effect of the environmental variables on leachate characteristics; 

[a+b+c] – effect of the environmental variables on leachate characteristics through their 

impact on substrate characteristics; 

[d] – unexplained variance. 

 

* fraction a – variance explained by the substrate characteristics; 

   fraction b – variance explained by the effect of environmental variables on substrate 

characteristics measured in the study; 

   fraction c – variance explained by the environmental variables 

 

Figure 3 Total (left) and relative (right) leached amounts of nutrients and dissolved organic 

matter from leaf litter (L), biofilms (B) and sediments (S) of IRES globally. Box: median, 

interquartile range (25-75%), and outliers (i.e. values that exceed 1.5 interquartile range). DM 

– dry mass; GAE – gallic acid equivalent. Note: relative leached amounts of SRP were not 

estimated. For parameter acronyms see Table 1. Letters in parentheses on the x-axis indicate 

non-significant difference between leachates from specified substrates (p > 0.0167, Dunn test 

for post-hoc comparison; see Methods). 
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Figure 4 Qualitative characteristics of dissolved organic matter leached from leaf litter (L), 

biofilms (B) and sediments (S) of IRES globally. Box: median, interquartile range (25-75%), 

and outliers (i.e. values that exceed 1.5 interquartile range). For parameter acronyms see 

Table 1. Letters in parentheses on the x-axis indicate that the difference between leachates 

from specified substrates was non-significant (p > 0.0167, Dunn test for post-hoc 

comparison; see Methods).  

 

Figure 5 Size fractions of dissolved organic matter (DOM) leached from leaves (L), biofilms 

(B) and sediments (S) of IRES globally. BP – biopolymers, HS – humic substances, LMWS – 

low molecular weight substances. Box: median, interquartile range (25-75%), and outliers 

(i.e. values that exceed 1.5 interquartile range). Letters in parentheses on the x-axis indicate 

that the difference between leachates from specified substrates was non-significant (p > 

0.0167, Dunn test for post-hoc comparison; see Methods).  

 

Figure 6 Partitioning of variance in quantitative composition (a) and qualitative 

characteristics (b) of leachates on global and regional scales (values indicate percentage of 

variance (R
2
Y) explained). Note: for biofilms, the analysis was done on data from the 

temperate zone only because of the limited amount of samples from other climate zones.  
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Table 1 Overview of the variables included in the partial least squares regression models and 

transformations applied to meet assumptions of analysis. 

 

Variable Description Measurement 

units 

Transformation Variabl

e in the 

PLS 

model 

Environmental variables 

PET Mean potential evapo-

transpiration for 1950-

2000 

mm month
-1

 Log (x) X 

Aridity Mean annual Aridity index 

for years 1950-2000 

- Log (x) X 

Altitude Altitude of the sampled 

reach 

m above 

 sea level 

Log (x) X 

Riparian cover Percentage of the sampled 

reach covered by 

vegetation 

% Log (x+1) X 

Width of the 

sampled reach 

Active channel width m Log(x) X 

Dry period Duration of the drying 

period 

days Log (x) X 

Pasture cover Percentage of pasture area 

within the river catchment 

% Log(x+1) X 

Forest cover Percentage of forested area 

within the river catchment 

% Log (x+1) X 

Urban cover Percentage of urban area 

within the river catchment 

% Log (x+1) X 

Chemical substrates characteristics 

% C Carbon content % Log (x) X, Y 

% N Nitrogen content % Log (x) X, Y 

C:N Molar C:N ratio - Log (x) X, Y 

Specific sediment characteristics 

Silt Silt fraction % Log(x) X, Y 

Sand Sand fraction % Log(x) X, Y 

Clay Clay fraction % Log(x) X, Y 

Mean size Mean particle size mm Log(x) X, Y 

Quantitative chemical characteristics of leachates 

DOC Dissolved organic carbon mg g
-1

 dry 

mass 

Log(x) Y 

DON Dissolved organic nitrogen mg g
-1

 dry 

mass 

Log(x) Y 

SRP Soluble reactive 

phosphorous  

mg g
-1

 dry 

mass 

Log(x) Y 

N-NH4
+
 Ammonium  mg g

-1
 dry 

mass 

Log(x) Y 

N-NO3
-
 Nitrate  mg g

-1
 dry 

mass 

Log(x) Y 

Explained variance, % 
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Qualitative chemical characteristics of leachates 

SUVA254 Specific ultraviolet 

absorbance  

mg C L
-1

 - Y 

FI Fluorescence index - Log(x+1) Y 

HIX Humification index - Log(x+1) Y 

β:α Ratio of autochthonous to 

allochtonous dissolved 

organic matter 

- Log(x+1) Y 

DOC:DON Ratio of DOC to DON 

concentration 

-  Y 

phenolics:DO

C 

Ratio of phenolics to DOC 

concentration 

- Log(x+1) Y 

LMWS Low molecular weight 

substances 

%  Y 

BP Biopolymers %  Y 

HS Humic substances %  Y 
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Table 2 Total and relative leaching rates of nutrients and organic matter species from leaves and bed sediments of IRES (median). For 

abbreviations, see Table 1. 

 
   Leaves Sediments 

Parameter Unit Leaching 

rate 

Arid Continental Temperate Tropical Arid Continental Temperate Tropical 

DOC mg g
-1

 dry mass Total 30.98 

 

47.40 

 

25.30 

 

22.90 

 

0.06 

 

0.25 

 

0.07 

 

0.08 

 

mg g
-1

 C Relative 86.28 108.86 58.10 66.50 14.66 13.30 12.24 19.92 

N-NH4
+
 mg g

-1
 dry mass Total 0.06 

 

 

0.14 

 

 

0.08 

 

 

0.105 

 

 

0.001 

 

 

0.004 

 

 

0.0015 

 

 

0.002 

 

 

mg g
-1

 N Relative 7.80 

 

11.70 6.60 8.20 6.01 4.30 4.51 6.36 

N-NO3
-
 mg g

-1
 dry mass Total 0.004 

 

 

0.006 

 

 

0.002 

 

 

0.008 

 

 

0.003 

 

 

0.01 

 

 

0.004 

 

 

0.005 

 

 

mg g
-1

 N Relative 0.43 

 

0.32 0.27 0.59 13.03 10.57 10.48 18.32 

DON mg g
-1

 dry mass Total 0.30 

 

0.22 

 

0.14 

 

0.29 

 

0.001 

 

0.007 

 

0.002 

 

0.002 

 

mg g
-1

 N Relative 22.03 17.80 12.50 28.80 6.10 4.90 4.80 2.30 

SRP mg g
-1

 dry mass Total 0.11 0.24 0.15 0.16 0.0004 0.002 0.0005 0.0007 

Phenolics mg of GAE* g
-1

 of 

substrate 

Total  9.08 

 

20.18 

 

8.38 

 

8.92 

 

0.003 

 

0.010 

 

0.005 

 

0.007 

 

mg of GAE* g
-1

 of C Relative 0.23 0.51 0.20 0.24 0.008 

 

0.006 0.005 0.009 

SUVA 254 mg C L
-1

  1.60 1.44 1.57 1.88 1.21 2.01 1.75 1.78 

 

* GAE – gallic acid equivalent 
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Table 3 Ranking of environmental variables and substrate characteristics that explain 

variance in quantitative composition (A) and qualitative characteristics (B) of leachates at 

global and regional scales according to their value of VIP (variable influence on projection) 

in the PLS analysis. VIP > 1 indicate highly influential predictors (dark grey), 1 > VIP > 0.8 

indicate moderately influential variables (medium grey), VIP < 0.8 – variables of low 

influence (light grey). 

 
Sediments Leaves Biofilms 

Predictors 
Global 

(170) 

Arid 

(20) 

Cont. 

(10) 

Temp. 

(125) 

Trop. 

(15) 

Global 

(183) 

Arid 

(21) 

Cont. 

(13) 

Temp. 

(131) 

Trop. 

(18) 

Temp. 

(23) 

 

Quantitative composition of leachates 

PET 1.445 0.111 0.557 1.441 1.367 1.129 0.776 1.352 1.134 1.180 0.833 

Aridity 0.371 1.444 0.388 0.303 0.708 0.765 0.979 1.371 0.505 1.844 1.131 

Dry period 0.495 0.580 1.767 0.325 1.061 0.630 0.745 0.706 0.752 1.000 0.534 

River width 0.867 0.920 1.095 0.868 0.333 0.821 0.683 1.207 0.950 0.938 0.852 

Riparian cover 0.955 1.243 0.805 0.765 0.394 0.744 0.869 0.702 0.567 0.554 0.829 

% pasture 0.153 0.506 0.727 0.205 0.063 1.225 1.397 0.442 1.160 1.467 0.189 

% forest 0.445 0.264 1.030 0.495 0.472 0.528 1.139 0.871 0.815 0.776 0.439 

% urban 0.389 0.073 0.929 0.532 1.030 0.163 0.674 1.116 0.360 0.865 0.558 

Altitude 0.784 0.731 0.547 0.630 0.881 0.549 1.170 1.268 0.982 0.439 1.041 

%C 1.768 1.390 0.889 1.782 1.170 1.132 0.990 0.365 1.454 0.668 1.424 

% N 2.062 1.657 1.345 2.117 1.000 1.673 1.510 0.933 1.279 0.705 2.026 

C:N 0.336 0.897 0.509 0.238 1.761 1.526 0.576 1.017 1.348 0.618 0.757 

% sand 0.897 1.368 1.100 0.856 0.986 
      

% silt 0.960 0.744 1.139 1.056 1.177 
      

% clay 0.920 1.055 1.145 1.003 1.159 
      

Mean size 0.902 1.136 1.067 0.923 1.004 
      

Var explained % 25.1 37.8 58.6 29.4 45.7 11.1 29.6 37.5 15.3 34.2 47.5 

 
Qualitative characteristics of leachates 

PET 1.100 0.582 0.903 0.377 1.734 0.496 1.696 1.097 0.601 1.378 1.538 

Aridity 0.432 0.526 1.180 0.430 1.217 0.680 1.074 0.983 0.853 1.167 0.703 

Dry period 0.468 0.704 1.141 0.555 0.877 0.613 1.555 1.224 0.599 1.786 0.690 

River width 0.864 0.841 0.375 1.230 0.281 1.027 0.255 0.438 1.045 0.934 0.497 

Riparian cover 0.786 0.645 1.092 0.265 0.234 0.452 0.638 1.093 0.176 0.516 0.564 

% pasture 0.589 0.217 1.257 0.988 0.310 0.716 0.794 0.722 0.652 0.728 1.081 

% forest 0.942 1.655 1.227 0.802 0.929 0.585 0.972 0.640 0.752 0.564 1.140 

% urban 0.469 0.478 0.095 0.108 1.161 1.097 0.860 0.712 0.385 1.128 1.235 

Altitude 1.124 0.191 1.094 1.386 0.683 1.104 0.722 1.002 1.059 0.369 0.869 

%C 1.148 1.553 0.577 0.562 0.882 2.311 0.824 0.516 2.329 0.243 1.057 

% N 0.688 1.059 0.575 0.729 0.878 0.822 0.846 1.311 1.036 1.130 1.165 

C:N 0.792 0.812 1.108 0.939 1.381 0.600 0.921 1.587 0.820 0.905 0.937 

% sand 1.379 1.609 1.080 1.309 0.935 
      

% silt 1.443 1.201 1.222 1.564 1.119 
      

% clay 1.403 0.967 1.164 1.492 1.161 
      

Mean size 1.389 1.247 0.979 1.455 0.952 
      

Var explained % 6.4 28.2 52.9 6.2 58.9 7.5 41.1 38.7 11.9 42.2 26.9 
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Table 4 Comparison of the areal fluxes (g m
-2

) of the different nutrients and OM species across climate zones (for abbreviations see Table 1). 

 

 Arid (N=23) Temperate (N=105) Tropical (N=15) Continental (N=12) 

Parameter Med. Mean±SD Min Max Med. Mean±SD Min Max Med. Mean±SD Min Max Med. Mean±SD Min Max 

DOC 9.40 11.00±6.07 2.96 26.71 16.70 24.90±29.82 3.00 162.67 15.90 14.99±7.53 3.71 28.01 43.80 44.79± 

21.15 

15.04 82.58 

N-NH4
+
 0.22 0.29±0.33 0.01 1.65 0.25 0.56±0.92 0.01 6.67 0.33 0.42±0.28 0.04 1.06 0.61 0.68±0.23 0.43 1.24 

N-NO3
-
 0.41 0.65±0.78 0.03 3.64 0.62 1.56±2.76 0.01 18.87 0.78 1.39±1.67 0.16 5.59 1.65 2.53±2.92 0.03 11.31 

SRP 0.07 0.12±0.14 0.03 0.57 0.10 0.20±0.34 0.02 2.63 0.11 0.15±0.12 0.03 0.51 0.36 

 

0.48±0.37 0.15 1.48 

Phenolics 1.10 1.57±2.08 0.01 9.43 1.45 3.19±4.95 0.012 35.00 1.11 1.90±2.04 0.05 7.57 2.78 2.75±1.19 0.37 4.58 
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