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Abstract 

Intermittent rivers and ephemeral streams (IRES) encompass fluvial ecosystems that eventually stop 

flowing and run dry at some point in space and time. During the dry phase, channels of IRES consist 

mainly of dry riverbeds (DRBs), prevalent yet widely unexplored ecotones between dry and wet 

phases that can strongly influence the biogeochemistry of fluvial networks. DRBs are often 

overlooked because they do not strictly belong to either domain of soil or freshwater science. Due to 

this dual character of DRBs, we suggest that concepts and knowledge from soil science can be used to 

expand the understanding of IRES biogeochemistry. Based on this idea, we propose that DRBs can be 

conceptually understood as early stage soils exhibiting many similarities with soils through two main 

forces: i) time since last sediment transport event, and ii) the development status of stabilizing 

structures (e.g. soil crusts and/or vascular plants). Our analysis suggests that while DRBs and soils 

may differ in master physical attributes (e.g. soil horizons vs fluvial sedimentary facies), they become 

rapidly comparable in terms of microbial communities and biogeochemical processes. We further 

propose that drivers of DRB biogeochemistry are similar to those of soils and, hence, concepts and 

methods used in soil science are transferable to DRB research. Finally, our paper presents future 

research directions to advance the knowledge of DRBs and to understand their role in the 

biogeochemistry of intermittent fluvial networks.  
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1. Introduction 

Intermittent rivers and ephemeral streams (IRES) encompass fluvial ecosystems that eventually stop 

flowing and run dry for some extent of time at some point along their course (Acuña et al., 2014; 

Larned et al., 2010). While intermittent rivers support water flow most year round but fall dry 

seasonally (normally in summer), ephemeral streams present dry phases lasting beyond a seasonal 

period and they transport surface water only after intensive rainfall (Uys and O'Keeffe, 1997; 

Williams, 2006). IRES are likely to account for at least half of the global fluvial network (Datry et al., 

2014; Stanley et al., 1997) and they have been described as being more representative of the world’s 

river systems than those with permanent flow (Datry et al., 2017; Williams, 1988). Recent estimates 

indicate that IRES represent 69% of total stream length, being the dominant watercourse type in arid 

and semiarid regions (Schneider et al., 2017). Importantly, flow intermittency is expanding worldwide 

in response to global warming and increased water extraction for human use (Schewe et al., 2014). As 

a result, interest in IRES research and management is rapidly growing, but the contribution of IRES to 

global biogeochemical cycles remains unclear (Datry et al., 2017; Leigh et al., 2016). Most 

biogeochemical studies of IRES have focused on the transition phases, from wet to dry and from dry 

to wet (e.g. Arce et al., 2014; Corti and Datry, 2012; Romaní et al., 2006; Skoulikidis et al., 2017a; 

von Schiller et al., 2015). However the dry phase (i.e. the period when no surface water is present) has 

received little attention so far (Datry et al., 2017; Steward et al., 2012), which makes the 

understanding of IRES biogeochemistry still incomplete.  

Riverbed sediments of IRES during the dry phase, namely dry riverbeds (DRBs), have been recently 

recognized as valuable ecotones linking dry and wet phases and hosting aquatic, terrestrial, and 

amphibious communities (Steward et al., 2012). Still, DRBs are often viewed as biogeochemically 

inert compared to perennial reaches and intermittent reaches during surface-flow periods (Larned et 

al., 2010; Steward et al., 2012). In fact, recent studies pose DRBs as relevant sites for organic matter 

(OM) and nutrient cycling along the fluvial network. For instance, OM processing by microbial 

communities that remain active during dry conditions likely causes release of considerable amounts of 

carbon dioxide (CO2) from DRBs to the atmosphere (Marxsen et al., 2010; Zoppini et al., 2014; 
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Zoppini and Marxsen, 2011), even at higher emission rates than flowing streams and being 

comparable to upland soils (Gómez-Gener et al., 2016; von Schiller et al., 2014). In addition, DRBs 

play a fundamental role in landscape nitrogen (N) cycling since they are significant sites for ammonia 

(NH4
+) oxidation, a process that provides nitrate (NO3

-) within fluvial networks (Arce et al., 2014; 

Gómez et al., 2012; Merbt et al., 2016). Despite their potential relevance, DRBs typically are not 

considered in biogeochemical budgets at the fluvial network scale (Raymond et al., 2013). This is 

probably because DRBs are excluded from the domains of both aquatic and terrestrial science, and 

thus conceptually placed in a scientific "no man's land" (Steward et al., 2012).  

 

Figure 1. (a) Degree of similarity between soils and different types of watercourses as a function of 

the duration of the dry phase. (b) Conceptual framework indicating how dry riverbeds (DRBs) of non-

perennial watercourses (intermittent and ephemeral) may become similar to soils as a function of two 

main drivers: time since the last sediment transport event (T), and development status of stabilizing 

structures such as soil biocrusts and/or vascular plants (S). Note that the conceptual framework 

operates under the spatial concurrence of DBRs and soils involving similar climate, topography, 

a b 

c 

(i) (ii) (iii) 
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parental material and organisms. The conceptual model shows that any flow event reducing T in 

DRBs will interrupt their trajectory of similarity to soils and move DRBs away from soils; the 

decrease in similarity resulting from flow resumption events will be more intense in intermittent 

DRBs (with lower starting point at S) than in ephemeral DRBs (with higher starting point at S). (c) 

DRBs with variable plant coverage: i: intermittent stream in France (El Aiguebrun, Vaucluse, photo 

by B. Launay), ii: ephemeral stream in northern Spain (Barranco de las Cortinas, Bardenas Reales, 

Navarra, photo by D. von Schiller) and iii: ephemeral stream in southern Spain (Rambla de la Parra, 

Murcia, photo by R. Gómez).  

Unlike continuously inundated riverbeds of perennial watercourses, DRBs of non-perennial 

watercourses are transitional habitats that move away from an aquatic to a terrestrial status and 

become “terrestrialized” by acquiring similar features to nearby soils (Figure 1a; Elosegi et al., 2010; 

Morandi et al., 2014; Thorp et al., 2006; Ward, 1998; Ward et al., 1998). When the constraints 

imposed by flowing surface water disappear, other constraints similar to those affecting soils will 

determine the biogeochemistry of DRBs (O’Neill et al., 1986). Similar to that of hydrologically 

dynamic floodplain systems (Schiemer, 1999), in non-perennial watercourses, the degree of 

“terrestrialization” and similarity to soils is linked highly to the duration of the dry phase (lack of 

surface water) and to inundation frequency (e.g. Harms and Grimm, 2012; Harms et al., 2009; Mori et 

al., 2017). These features are controlled by climate and local geomorphologic conditions, and shape 

the exposition of DRBs to inundation events (e.g. position in the fluvial network and connection with 

the main watercourse). Thus, the degree of similarity between soils and DRBs will be more prominent 

in sites with long dry phases and less frequent flow events (Figure 1a). DRBs and soils are composed 

of a complex mixture of the same constituents (i.e. rocks, minerals, OM, and assemblages of plants, 

animals and microorganisms). Both habitats are organized in a mosaic-like pattern of bed substrates 

and pedotops, respectively, and filter, store, and transform energy and nutrients. 

Given the potential similarities between DRBs and soils, we suggest that soil science can provide 

freshwater scientists fruitful information to better understand the biogeochemistry of DRBs and their 

role in fluvial networks. Research methods, paradigms and models used to investigate biogeochemical 

processes in DRBs and their response to environmental factors could emerge from soil science rather 

than from freshwater science. Indeed, biogeochemical concepts in freshwater science that are mostly 
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based on perennial running waters cannot be applied strictly to DRBs, e.g. the Nutrient Spiraling 

Concept (Newbold et al., 1981; Webster and Patten, 1979; but see the Telescoping Ecosystem Model 

Fisher et al., 1998). Also, because DRBs are shaped by sediment transport and flow events, certain 

basic principles linked to soil science such as vertical distribution of soil profiles and steady state 

assumptions based on stability of energy and material budgets over time are difficult to apply to 

DRBs (Blume et al., 2016; Huggett, 1998; Nadelhoffer et al., 1998). Conversely, DRBs fit into many 

concepts derived from soil science, especially those regarding biogeochemical responses to water 

pulses (Austin et al., 2004; Belnap et al., 2005). For example, rainfall and flood events in DRBs lead 

to increased carbon mineralization and emissions of CO2 (Fromin et al., 2010; Gallo et al., 2014), a 

process that has been previously well described in soils and known as the "Birch effect" (Birch, 

1958). However, freshwater research has paid little attention to these ideas so far. Given that soil-

forming processes (weathering, leaching, mineral formation and destruction, podsolization, and 

humus development) occur at time scales from years to thousands of years, DRBs can be considered 

as a type of relatively early stage soil type, like fluvisols. These are young soils that develop from 

alluvial deposits with weak horizon development that are flooded periodically by surface waters or 

rising groundwater (Blume et al., 2016; FAO, 2006; Grimm et al., 2003; Soil Survey Staff, 2014).  

We propose that DRBs can be conceptually understood as young soils that evolve gradually towards a 

more mature stage soil-like, a process functioning from two main forces (Figure 1b): time since last 

sediment transport event (T), and development status of stabilizing structures such as soil crusts or 

vascular plants (S). We consider as reference an upland soil, since riparian soils or floodplains can be 

seen as intermediate stages in this evolution of similarity. The proposed conceptual framework is 

based on the assumption that soils and DRBs occur in close proximity so that parent material, climate, 

topography and biotic community can be considered equivalent (i.e. concurrent; see section 2 for 

further details). For example, a valley soil where there is much deposition of fine material and soil 

depth is high (Blume et al., 2016) should not be compared with a headwater DRB where erosion is 

high and the riverbed is dominated by coarse material, which is more similar to a hillslope soil (Allan 

and Castillo, 2007; Blume et al., 2016). The particular hydrological regime of a non-perennial 
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watercourse has fundamental implications for our conceptual model by determining the degree of 

development of stabilizing structures (S) at the beginning of T (Figure 1b, and c ii, iii). In ephemeral 

streams, DRBs often present a certain degree of terrestrialization with the presence of terrestrial plants 

as stabilizing structures (Fossati et al., 1999; Stromberg et al., 2017) similar to those developed in 

gravel bars subject to episodic dry and flood phases (Figure 1b, and c ii, iii; e.g. Bätz et al., 2014; 

Mardhiah et al., 2014; McBride and Strahan, 1984). Thus, in our conceptual framework, DRBs of 

ephemeral streams may exhibit features more similar to soils by showing a higher degree of 

development of stabilizing structures (higher S, Figure 1b, Figure 1c ii, iii) when compared to DRBs 

of intermittent rivers that commonly lack such types of vegetation (Figure 1b, Figure 1c i). Further, 

any flow resumption determining the duration of T will temporarily move back the DRB to the 

aquatic state, thereby resetting their "trajectory" toward soil; this reset being more intense in 

intermittent than ephemeral DRBs (Figure 1b).  

Conceptually, from this perspective, DRBs increasingly resemble soils along structural and functional 

dimensions as the hydrological regime shifts from intermittent (time "T" seasonal- dependent) to 

ephemeral (time "T" supra-seasonal dependent with episodic flow events; Uys and O'Keeffe, 1997; 

Williams, 2006). Based on this conceptual framework, we explore the potential of using knowledge 

from soils to study the biogeochemistry of DRBs by comparing key structural (physical and 

microbiological) and functional (biogeochemical processes) attributes of both types of habitats. As 

exposed above, our comparisons are based on the assumption of spatial concurrence of both habitats. 

Because the research interest of the authors centers on OM and nutrient cycling, the treatment of 

biogeochemistry refers mainly to these functional properties. By comparing soils and DRBs, we aim 

to improve the understanding of IRES biogeochemistry and provide insights for modeling at multiple 

spatio-temporal scales. 

2. Physical structure of DRBs and soils and their geomorphological drivers 
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Figure 2. Diagram of a soil profile (left) and a dry riverbed profile (DRB, right) showing major 

similarities and differences in physical, geomorphological, hydrological and biological properties. 

Soil formation is mainly a local process that results in the development of its horizons that further 

determine their physical, microbial and biogeochemical features. DRB structure and formation depend 

on deposition and sorting processes during sediment transport that result in sedimentary facies 

characterized by sorting of sediment particles. During the dry phase, local formation processes will 

favour the development of aggregates in DRBs. The position of DRBs and soils within the landscape 

will influence oscillations in groundwater level, likely more frequent in DRBs that have subsurface 

flow and lateral fluxes. The presence of vegetation in soils will favour evapotranspiration and limit 

the infiltration of water, while the low biomass or complete lack of vegetation of DRBs will reduce 

evapotranspiration and favour infiltration of water as well as temperature fluctuations and gas 

exchange. The presence of roots and rhizosphere in soils will further favour the development of 

aggregates. OM will be more patchily distributed in DRBs as a result of downstream transport and 

deposition. Microbial communities will differ between soils and DRBs as a result of the different 

content and distribution of OM and presence of vegetation.  
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Soil formation occurs through disintegration, decomposition, recomposition and aggregation of 

mineral material contained in exposed rocks by physical and chemical processes. This material is 

further conditioned by biological activity and culminates in the formation of the characteristic soil 

profile (Figure 2; Blume et al., 2016; Hillel, 2003). A soil profile is composed of a number of 

horizontal layers (i.e. soil horizons) that differ in colour, physical structure and chemical 

characteristics from the parent material (Figure 2; Blume et al., 2016; Jones et al., 2005; Weil and 

Brady, 2016). In contrast, DRBs result from the transport and deposition of sediments as water makes 

its way downstream (Gordon et al., 2004). Transport and deposition result in a complex arrangement 

in strata, characterized by overlapping sedimentary layers of different grain size distributions (Figure 

2; Bridge, 2003; Gordon et al., 2004). Due to different formation processes, parent material may differ 

with soils being mainly composed of a mixture of organic and mineral compounds of autochthonous 

origin while DRBs can be considered being composed of allochthonous material. Still, DRBs are 

inherently linked to the eroded soils and slopes from which they come from (Boix-Fayos et al., 2006; 

Boix-Fayos et al., 2015; Jaeger et al., 2017; Rhoton et al., 2006). Due to this strong link between soils 

and DRBs, concurrence must be considered when applying our conceptual model (see above). 

The genesis of both soils and DRBs is linked to the topography, lithology and geomorphological 

dynamics occurring at different spatial and temporal scales. At the catchment scale, and depending on 

local soil characteristics, land-use, climate, erosion processes (rill, inter-rill, gully, bank and channel 

erosion, landslides) and their interaction will ultimately determine the particle size, the amount and 

quality of OM and nutrients transported and redistributed within the catchment, and to the fluvial 

network (de Vente and Poesen, 2005; Haregeweyn et al., 2008; Hoffmann et al., 2013; Kusnierz and 

Sivers, 2018; Nadeu, 2013; Nadeu et al., 2012; Nadeu et al., 2011; Scott et al., 2013; Wang et al., 

2010). At hillslope and reach scale, geomorphology will determine the physical characteristics of soils 

and DRBs. For instance, in a sub-humid Mediterranean catchment, the similarity between soils and 

alluvial bars and wedges in some physico-chemical properties (e.g. texture, micro-aggregates, and 

organic carbon content) strongly depended on the distance from source areas and sediment 

connectivity (Boix-Fayos et al., 2015; Nadeu et al., 2012; Nadeu et al., 2011).  
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The formation processes result in differences in the physical characteristics of soils and DRBs (Table 

1). From a biogeochemical perspective, water content, bulk density, OM, hydraulic conductivity and 

fine particle content are the most relevant physical properties. These properties modulate gas and 

water fluxes, temperature distribution and habitat availability (Blume et al., 2016). In soils, gas fluxes 

and infiltration and evaporation of water can be reduced by the organic horizon with abundant fine 

particles (Table 1 and Figure 2; Franzluebbers, 2002; Minasny and McBratney, 2017). Fine particles 

reduce porosity, enhance thermal conductivity and buffer temperature oscillations (Blume et al., 

2016). As a result of the transport and deposition formation processes, DRBs tend to have coarser 

particles (more sand and less clay) compared to soils, and they are generally depleted in OM and 

nutrients that are patchily distributed (Boix-Fayos et al., 2015; Frossard et al., 2015; Gómez-Gener et 

al., 2016; Smith et al., 2013; Stacy et al., 2015). As observed in bare soils (e.g. Smits et al., 2012), the 

coarser texture and lower OM in DRBs will result in higher water infiltration and evaporation, gas 

fluxes, and oscillations in temperature (Table 1; Blume et al., 2016; Zribi et al., 2015).  

 

Physicochemical property Soils DRBs Reference 

Spatial arrangement 
Horizons  

(in situ formation) 

Sedimentary structures  

(deposited material) 
FAO, 2006 

Profile depth variable variable  

Dominant grain size < 2mm > 15mm 
Boix-Fayos et al., 2015; Frossard 
et al., 2015; Gómez-Gener et al., 
2016; Stacy et al., 2015 

Sand content (2000-63 µm) low high 

Boix-Fayos et al., 2015; Doetterl 

et al., 2012; Gómez-Gener et al., 
2016; Nadeu et al., 2011; Rhoton 
et al., 2006 

Clay content high low to medium 
Boix-Fayos et al., 2015; Doetterl 

et al., 2012; Gómez-Gener et al., 
2016; Rhoton et al., 2006 

Macroaggregates (>2mm) high low 
Bätz et al., 2014; Mardhiah et 
al., 2014 

Microaggregate (63-250 µm) high low 
Bätz et al., 2014; Mardhiah et 
al., 2014 
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Bulk density (g cm
-3

) low high Nadeu et al., 2011 

Water holding capacity (%) high low Gómez-Gener et al., 2016 

Porosity* low high 

 Compaction* high low 

Hydraulic conductivity* low high 

Cation Exchange Capacity 
(CEC) 

high low Frossard et al., 2015 

OM origin autochthonous mostly allochthonous Datry et al., 2018 

OM content 
high, decreases with 
soil profile depth 

low, regardless of 
sediment profile depth 

Boix-Fayos et al., 2015; Nadeu 
et al., 2012; Nadeu et al., 2011; 
Rhoton et al., 2006; Stacy et al., 
2015; Wang et al., 2010 

N content high low 
Boix-Fayos et al., 2015; Gómez-
Gener et al., 2016; Wang et al., 
2010 

C:N high low Boix-Fayos et al., 2015 

* Based on grain size distribution and clay content 

 

Table 1. Comparison of key physico-chemical properties of soils and dry riverbeds (DRBs). 

 

During the dry phase, the physical characteristics of DRBs will be more influenced by local formation 

processes as in soils. A key property of soils will begin to develop and gain significance: so-called 

aggregates (Figure 1b and 2; Mardhiah et al., 2014; Totsche et al., 2017). Aggregates (micro- and 

macro-) consist of a group of soil particles that adhere to one another more strongly than to 

surrounding soil particles (Table 1, Figure 2; Follet et al., 2009). Aggregates result from the 

interaction of many factors, including micro-environmental conditions (mainly water availability and 

temperature), soil properties, and presence of bioengineers (plants, mycorrhizal hyphae, invertebrates 

and microorganisms; An et al., 2010; Bätz et al., 2014; Chotte, 2005; Kay, 1998; Miltner et al., 2012; 

Verchot et al., 2011). Depending on their size and porosity, aggregates influence the physical 

properties of soils: movement and storage of water, diffusion of solutes, redox gradients, microbial 

community structure and vegetation development (Gregorich et al., 2003; Mora-Gómez et al., 2015; 
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Sollins et al., 1996; Verchot et al., 2011). Aggregates are often considered as biogeochemical hotspots 

(Ebrahimi and Or, 2016; Lee et al., 2012; Rillig et al., 2017; Vos et al., 2013); in fact, soil quality is 

often expressed as the degree of aggregation (Bronick and Lal, 2005). Raindrops, erosion, scouring 

and drying easily disrupt aggregates (Blankinship et al., 2016; Boix-Fayos et al., 2015; Hillel, 2003), 

and once they reach the stream by water flow runoff, they undergo flocculation processes that totally 

alter their physical structure (Droppo et al., 2005). Therefore, the presence and significance of 

aggregates in DRBs at early stages of the dry period might be limited compared to soils and are 

increasingly formed as roots and fungi develop (Figure 2; Bätz et al., 2014; Mardhiah et al., 2014). 

Vegetation establishment plays a key role in the physical characteristics of DRBs. First, the 

development of vegetation and biocrusts stabilizes the sediment (Figure 1b) and is a pedogenic force 

that modifies its physical structure that favors the development of aggregates and macropores, 

creating new habitats (rhizosphere) for terrestrial microorganisms (Bätz et al., 2014; Gutiérrez and 

Jones, 2006; Verboom and Pate, 2006). Second, similar to the effect of riparian vegetation, the 

presence of vegetation in DRBs can modulate exposure to wind and solar radiation as well air 

humidity, ultimately determining temperature distributions and water and gas fluxes (Figure 1 c iii; 

Fossati et al., 1999; Hillel, 2003; Li et al., 2016; Stromberg et al., 2017). The development of 

vegetation in DRBs is also associated to geomorphological processes, such as river incision, that 

cause changes in the frequency and intensity of sediment transport events and lowers groundwater 

levels (Auble et al., 1994; Bombino et al., 2013; Ellery et al., 1993; Poff, 1997). Due to their position 

in the landscape (i.e. topography), the groundwater table in DRBs tends to be closer to the surface 

than in soils; in fact, DRBs can support subsurface flow despite the lack of continuous flowing surface 

water (Figure 2; Costigan et al., 2016, 2017; Marxsen et al., 2010). As a result of the more superficial 

groundwater table and/or subsurface flow, riparian ecosystems that border perennial to intermittent 

rivers and streams in dryland regions have substantially more biomass and greater productivity than 

the surrounding terrestrial vegetation (Scott et al., 2013). Therefore, the development of vegetation 

and stabilizing structures in DRBs might be favoured by groundwater table and subsurface flow as in 

ephemeral streams (Figure 1c iii).  
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3. Biogeochemistry of DRBs and soils 

In this section, we compare the main microbial and biogeochemical properties involved in OM and 

nutrient cycling in soils and DRBs by using information from the available literature and by 

examining how different physical factors (e.g. vegetation, texture; Figure 2 and Table 1) can drive 

differences in specific biogeochemical properties (Table 2). In general, we approach the comparison 

between the two habitat types from the temporal perspective of desiccation of DRBs (early or late 

stages). Due to the relevance of water availability for biogeochemical reactions in water-limited 

systems such as DRBs, we further examine and compare the functional response of soils and DRBs to 

changes in water availability.  

Biogeochemical process Soils DRBs References 

Leaf litter decomposition (d
-1

) 0.0012-0.0072
d,e,f

 0.0005 - 0.0032
a,b,c

 

a
Abril et al., 2016; 

b
Corti 

et al., 2011; 
c
Riedl et al., 

2013; 
d
Almagro et al., 

2010;
e
Langhans et al., 

2006; 
f
Langhans et al., 

2008 

Net primary production 

(mg C m
-2

 d
-1

) 
800-3000

g,,h, d
 No data available  

g
Ni et al., 2001; 

h
Michaletz et al., 2014 

CO2 emissions measured in situ 
(chamber; mg C m

-2
 d

-1
) 

65– 2500
i, j

 74– 1728
i-j, d, k, l, m

 

i
Gómez-Gener et al., 

2016; 
j
Gómez-Gener et 

al., 2015;
k
Bond-

Lamberty and Thomson, 
2010; 

l
Raich and 

Schlesinger, 1992; 
m

Raich et al., 2002 

Extracellular enzyme activities (nmol h
-1

 cm
-2

) 

β-glucosidase 3320
n
 5 – 225

o
 

n
Sinsabaugh et al., 2008; 

o
Timoner et al., 2012 

Leucine aminopeptidase 
1450

n
 0 – 180

o
 

Alkaline phosphatase  5300
n
 50 – 300

o
 

*
Net primary production was computed as the sum of annual production of roots, stems, branches, and reproductive 

(when available) and foliage components. 

 

Table 2. Comparison of biogeochemical processes in soils and dry riverbeds (DRBs). When paired 

studies were not available, individual studies undertaken under arid, semiarid, and Mediterranean 
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conditions were selected by assuming that arid and semiarid DRBs would likely be the most similar to 

uphill soils.  

 

 

Figure 3. Diagram representing the main processes and fluxes of organic matter (OM) and nutrients 

(N and P) occurring in soils and dry riverbeds (DRBs). Different sizes of boxes and arrows represent 
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differences in the relative importance of each compartment and process, respectively. Gas fluxes are 

represented in blue color. Terrestrial OM sources dominate in soils, while both aquatic and terrestrial 

OM sources are present in DRBs. The OM pool is divided into labile and stable OM, the latter being 

more relevant in soils together with organo-mineral complexes (i.e. associations of organic matter and 

mineral particles) that play an important role in adsorption-desorption processes of primary nutrients 

(N and P). The rhizosphere in soils plays a relevant role in nutrient dynamics as well as being a source 

for labile dissolved OM (DOM). In DRBs, sediment mobility can determine the amount of litter 

material buried in deep sediments, acting as OM decomposition hotspots as well as microbial refuge.  

 

3.1 Microbial community composition 

Microbial communities regulate biogeochemical cycles in ecosystems (Rousk and Bengtson, 2014). 

The degree of similarity between DRBs and soils in terms of microbial community composition 

depends both on deterministic (i.e. environmental filtering) and stochastic processes (i.e. dispersal 

from adjacent terrestrial ecosystems). Similar to soils, microbial community composition in DRBs is 

likely driven by OM and nutrient availability, colonizable surfaces, redox conditions, texture, 

aggregates and humidity (Girvan et al., 2003; Johnson et al., 2003; Marschner et al., 2003; Rillig et 

al., 2017). In DRBs, together with increases in OM and nutrients, the progressive development of 

aggregates can contribute to enhance the degree of similarity of microbial communities with soils. 

While recent research suggests that bacterial, fungal and archaeal communities along a terrestrial-

aquatic gradient are dominated by specialist microorganisms specific to a particular habitat (Monard 

et al., 2016), a study in boreal systems concluded that between 20-35% of freshwater bacteria are of 

terrestrial origin (Ruiz-González et al., 2015). Therefore, despite local differences, microorganisms of 

terrestrial origin could increase the degree of similarity between soils and DRBs in combination with 

increases in OM content and aggregate development. Together with physical properties of 

sediment/soil, the degree of similarity between DRBs and soil microbial communities also will be 

driven by dispersal and colonization from adjacent terrestrial ecosystems, groundwater, and hyporheic 

zones of taxa with specific habitat requirements (Febria et al., 2012; Febria et al., 2015; Mering et al., 

2007; Monard et al., 2016; Sabater et al., 2016; Timoner et al., 2014).  
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In addition to dispersal and the physical properties of soils and DRBs, we expect the similarity 

between DRB and soil communities to be linked to water fluctuations (drying, subsurface and surface 

flow, groundwater table oscillations and rainfall). Drying stress in soils is a fundamental driver of 

compositional changes of communities that selects taxa able to cope with osmotic stress (Fierer and 

Schimel, 2002; Schimel et al., 2007; Zoppini et al., 2014; Zoppini and Marxsen, 2011; Pohlon et al., 

2013). Water fluctuations can cause drying-rewetting stress, thereby selecting osmotic stress resistant 

microbial communities in both soils and DRBs (Borken and Matzner, 2009; Fromin et al., 2010; 

Lundquist et al., 1999; Schimel et al., 2007). Recent research has reported similar mechanisms 

between soils and DRBs to cope with drying-rewetting stress; for instance, thicker cell walls in gram 

positive bacteria and fungi (Lennon et al., 2012; Manzoni et al., 2006; Schimel et al., 2007; Zeglin et 

al., 2013), and production of extracellular polymeric substances by biofilms to increase sediment/soil 

water holding capacity and growth at lower water potentials (Chenu, 1993; Flemming and Wingender, 

2010; Or et al., 2007; Romaní et al., 2013; Rosenzweig et al., 2012; Sabater et al., 2017).  

3.2 OM cycling 

In general, the higher plant biomass developed in soils compared to DRBs determines higher OM 

standing stocks and higher C:N elemental ratios in soils than in DRBs (Table 1). Moreover, while 

soils are fueled only by terrestrial OM sources, both aquatic and terrestrial sources contribute to OM 

pools in DRBs (Figure 3). At the first stages of drying in DRBs, OM stocks from the preceding 

aquatic phase (e.g. biofilms and macrophytes) are especially relevant (Ylla et al., 2010). These 

autochthonous sources are of high nutrient quality (low C:N elemental ratio; Artigas et al., 2008) and 

provide labile OM that can support high microbial activity, similar to patterns described in primary 

soils after glacier retreat or in deserts (Bradley et al., 2015). Furthermore, variability in OM stocks in 

DRBs during early desiccation stages can result in higher heterogeneity of DOM and particulate OM 

(POM) compared to soils. 

Throughout the dry period in DRBs, we expect that both OM quantity and quality of DRBs become 

similar to those of surrounding soils due to leaf litter inputs from riparian zones and development of 
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terrestrial vegetation (Acuña et al., 2007; McClain et al., 2003; Stegen et al., 2016b). In soils, root 

production represents a considerable OM source (Schmidt et al., 2011; Silver and Miya, 2001; 

Williams, 1988). While roots are a more stable or recalcitrant OM source than leaf litter (Austin et al., 

2009; Kemp et al., 2003), root exudates provide a labile C source to microbial assemblages of 

rhizospheres (Wagener et al., 1998) that is lower in DRBs (Kallenbach et al., 2016). In general, higher 

and more stable OM content is expected in soils (Schimel and Schaeffer, 2012) and lower but more 

labile OM content is expected in DRBs (Figure 3; Axmanová and Rulík, 2005; Trulleyová et al., 

2003). However, this general pattern may be modified in arid and semiarid regions where vegetation 

is limited to riparian zones and within DRBs. Here, a greater amount of OM may accumulate in DRBs 

compared with adjacent soils (Figure 1c iii; Fossati et al., 1999; Steward et al., 2012).  

Disparities in OM quality and quantity between soils and DRBs may translate as differences in OM 

decomposition rates and ultimately in C cyling (Belay-Tedla et al., 2009; Swift et al., 1979). 

However, other enviromental and biological factors also should be taken into account (pH and 

microbial stoichiometry demand; Schimel and Schaeffer, 2012; Sinsabaugh, 2010; Sinsabaugh and 

Follstad Shah, 2011) as well as the interaction between stable OM and labile OM pulses (i.e. priming; 

Kuzyakov, 2010). In soils and DRBs, extracellular enzyme activities (EEAs) exert a strong control on 

microbial decomposition of OM (Burns et al., 2013), even under dry conditions (Zoppini et al., 2014; 

Zoppini and Marxsen, 2011). The presence of specific EEAs also reflect the origin and quality of OM 

(Chróst, 1991; Kotroczó et al., 2014). For instance, the ratio of β-glucosidase (involved in the 

decomposition of simple polysaccharides) to phenoloxidase activity (involved in the degradation of 

lignin compounds) is reduced in soils in contrast to streambed sediments, suggesting sediment OM is 

more labile than soil OM (Sinsabaugh et al., 2012). The greater capacity to degrade stable OM 

compounds in soils can be linked to higher fungal biomass in terrestrial ecosystems because fungal 

communities play a major role in ligno-cellulose degradation (Burns et al., 2013; Romaní et al., 

2006).  

Disparities in nutrient availability and OM stoichiometry can also determine contrasts in OM 

bioavailability and decomposition between soils and DRBs. For instance, decomposing OM generally 
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exhibits higher C:N elemental ratios in soils than DRBs (Table 1), and thus greater N limitation is 

expected in the former. Lower C:N elemental ratios together with lower OM content suggest 

heterotrophic activity to be constrained by C availability to some extent in DRBs. We thus 

hypothesize that this might determine higher values of C to N acquisition enzymes in DRBs compared 

to soils (Table 2; Sinsabaugh et al., 2012). 

Differences in OM cycling between DRBs and soils can also be the result of a distinct contribution of 

terrestrial invertebrates to OM degradation. Terrestrial invertebrates can play a relevant role in the 

pre-conditioning of POM in DRBs, especially at the beginning of the dry phase when they are 

attracted by fresh POM of aquatic origin (e.g. dead algae, invertebrates, and fish; Corti and Datry, 

2012). Yet, the action of invertebrates in soil OM cycling can persist over time in both shallow and 

deep layers (Doblas-Miranda et al., 2009). 

Abiotic factors are also important drivers of OM decomposition. For instance, in open canopy DRBs 

or soils decomposition of OM can be strongly influenced by solar radiation and temperature (Almagro 

et al., 2017; Lee et al., 2012; Steward et al., 2012). Exposition to solar radiation promotes 

photodegradation and chemical alterations of plant material (Almagro et al., 2015), conditioning it for 

subsequent biodegradation (del Campo and Gómez, 2016; Fellman et al., 2013). The effect of solar 

radiation on OM degradation is expected to be higher in DRBs than in soils because vegetation cover 

tends to be lower in the former (Figure 3).  

In terms of leaf litter decomposition, information gleaned from the literature indicates that 

decomposition rates are higher in soils than DRBs (Table 2). This pattern can reverse if considering 

how high organic C decomposition rates can be in the hyporheic zone of some IRES (Burrows et al., 

2017). In fact, recent studies addressing direct comparisons of CO2 emissions in the two habitats 

showed that DRBs are comparable to upland soils (Gómez-Gener et al., 2016; von Schiller et al., 

2014). To obtain a complete view of CO2 fluxes from DRBs, data on net primary production is still 

required (Table 2). Temperature, moisture, and texture are important drivers of CO2 emissions in both 

soils and DRBs (Almagro et al., 2009; Almagro et al., 2013; Gómez-Gener et al., 2016). Yet, OM 
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composition could influence CO2 emissions to a greater extent in soils than in DRBs, where OM 

availability could play a major role (Artigas et al., 2008; Gómez-Gener et al., 2016). Therefore, under 

equal temperature and moisture conditions, respiration could be limited by C to a major extent in 

DRBs compared to soils.  

  

3.3 Nutrient cycling 

There are essential differences between soils and DRBs in how assimilatory and dissimilatory 

processes regulate nutrient cycling (Figure 3). One distinctive aspect regards nutrient availability. In 

soils, most organic N and phosphorus (P) is bound to humic substances, which may be less available 

to microorganisms than inferred by elemental ratios (Nannipieri and Eldor, 2009). In contrast, labile 

sources of organic N and P in DRBs such as decaying biofilms provide labile OM and nutrients, at 

least during early stages of drying. In vegetated soils, roots and fungal hyphae are responsible for 

most N and P uptake, and they actively transport nutrients from sites of nutrient supply to sites of 

nutrient demand (e.g. Fellbaum et al., 2014; Ratliff and Fisk, 2016; Robertson and Groffman, 2015; 

Unger et al., 2016; Wagener et al., 1998). In DRBs, however, nutrient allocation is driven by 

photoautotrophic and heterotrophic uptake by microbial assemblages. Noteworthy, differences in 

nutrient uptake between soils and DRBs may become less obvious when plants develop in DRBs as 

they may outcompete microbes for nutrient uptake (Baldwin and Mitchell, 2000; Cavanaugh et al., 

2006).  

Atmospheric deposition and N2 fixation can be important sources of inorganic N in soils and DRBs 

(Figure 3). Since vegetation has been shown to strongly regulate atmospheric N deposition 

(Aguillaume et al., 2017; Fenn and Poth, 2004), we expect this process to be higher in soils than 

DRBs because of higher crust levels and vegetation canopy cover in the former (Belnap et al., 2005). 

Yet, these differences will ultimately depend on climate and atmospheric pollution, and will disappear 

as the time since last sediment transport event passes (Figure 1b). 
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As in soils, oxygenation associated with drying creates conditions suitable for aerobic ammonification 

and nitrification (e.g. Cavanaugh et al., 2006; Gómez et al., 2012; Tzoraki et al., 2007). As a result, 

inorganic N (NH4
+and NO3

-) accumulates in DRBs as desiccation progresses with time (Arce et al., 

2014; Gómez et al., 2012; Merbt et al., 2016). On the contrary, denitrification, an anaerobic process 

that contributes to the permanent removal of N from any ecosystem (Seitzinger, 1988), is likely low in 

soils and DRBs because of low or null water saturation conditions, which impede oxygen diffusion 

and limit anoxic environments. Occasionally, at early stages of drying (water saturated sediments) or 

during flood events, DRBs can support extended oxygen-depleted habitats suitable for denitrification 

with higher rates than in upland soils, similar to that in floodplains (Baker and Vervier, 2004; Valett et 

al., 2005). However, the availability of an electron acceptor (e.g. NO3
- or sulfate) and sufficient C to 

support microbial metabolism also are required for denitrification to occur. Often, highest 

denitrification rates have been detected where NO3
- intercepts C rich sites such as plant rooting zones 

(Jacinthe et al., 1998; Schade et al., 2001). Thus, limited denitrification in well-oxygenated sediments 

of DRBs at late stages of drying can be alleviated when plants develop in the stream channel, which 

provide a source of labile C and can promote anoxic microsites within DRBs, and ultimately stimulate 

heterotrophic metabolism (Schade et al., 2001).  

Regarding P cycling, there is little information available for either soils or DRBs. In soils, weathering 

and mineralization are the most important sources of P (Margalef et al., 2017; Turner et al., 2005), 

while mineralization in well-aerated porous media may be the predominant P source in DRBs (Figure 

2). P dynamics are mainly driven by physical and chemical properties of soils and sediments (e.g. 

Khalid, 1989). P can adsorb to OM, carbonate and clays and also immobilized by biota. Given that 

DRBs may contain less OM and clay particles than soils, P adsorption is expected to be lower in 

DRBs. Dieter et al. (2015) and Kinsman-Costello et al. (2016) showed that drying reduced P 

adsorption and stimulated P mineralization in dry lake sediments, which led to increases in the 

proportion of labile and soluble P forms. Similarly, mineralization of phosphorylated OM remains 

active during sediment drying in DRBs (Marxsen et al., 2010; Zoppini et al., 2014; Zoppini and 
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Marxsen, 2011). As a result, a significant pulsed release of soluble P can occur upon rewetting in 

DRBs (Keitel et al., 2016; Kinsman-Costello et al., 2016).  

3.4 Water as a fundamental driver of biogeochemical variability in soils and DRBs  

A major physical factor influencing the variability of biogeochemical processes in soils and DRBs is 

water availability (Blume et al., 2016; Sabater et al., 2016). Increases in soil water availability (rain, 

dew, changes in groundwater table) burst respiration, a phenomenon known as “Birch effect” (Birch, 

1958; Kim et al., 2012; Placella et al., 2012). In DRBs, following increases in water availability, 

similar responses have been reported for respiration (Baldwin and Mitchell, 2000; McIntyre et al., 

2009; Riedl et al., 2013), primary production (Timoner et al., 2012), nitrification and denitrification 

(Arce et al., 2014; Skoulikidis and Amaxidis, 2009; Skoulikidis et al., 2017b). In soils, mechanisms 

behind such biogeochemical bursts are mainly based on the disruption of organo-mineral complexes, 

understood as aggregates playing a significant role in nutrient sorption-desorption processes 

(Kinsman-Costello et al., 2016) and the release of intracellular components due to osmotic stress 

associated with a rapid rise in water potential, resulting in increased labile C and nutrient supply for 

remaining microorganisms (Birch, 1958; Butterly et al., 2009; Fierer et al., 2003; Griffiths and Birch, 

1961).  

The increase in water availability linked to pulses of nutrients and C can have multiple effects on 

microbial dynamics: (i) reactivation of a large number of dormant microbes (Kuzyakov and 

Blagodatskaya, 2015; Timoner et al., 2012), (ii) shifts in microbial community composition (Griffiths 

and Philippot, 2013; Stegen et al., 2016a), and (iii) increases in decomposition (Kuzyakov et al., 

2000). In soils and DRBs, any increase in pore water content can favor the development of anaerobic 

habitats (McIntyre et al., 2009) and promote denitrification and emissions of N gas fluxes (Austin and 

Strauss, 2011; Gallo et al., 2014; Groffman and Bohlen, 1999). Yet, increases in pore water content 

can limit aerobic mineralization processes such as leaf litter decomposition driven by fungi (Mora-

Gómez et al., 2015; Schlief and Mutz, 2011; but see Risse-Buhl et al., 2017). Models developed in 

desert soils describing the vertical mobilization and transformation of nutrients after rainfall (i.e. 
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Trigger-Transfer-Reserve Pulse (TTRP); Belnap et al., 2005) would also apply to DRBs during 

rainfall as well as during early stages of flow resumption (Larned et al., 2010). In combination with 

the gradual change in DRB development, variability in water availability has great potential to shape 

DRB biogeochemistry. Thus, application of our conceptual framework should take into account the 

significant role played by punctuated changes in water availability in DRBs during dry phases.  

4. Conclusions and future directions 

 

Figure 4. Conceptual framework indicating the degree of similarity in physical structure, microbial 

community and biogeochemistry of dry riverbeds (DRBs) of non-perennial watercourses (intermittent 

and ephemeral) with soils as a function of two main drivers: (T) time since the last sediment transport 

event, and (S) development status of stabilizing structures such as soil biocrusts or vascular plants.  

 

Expanding our initial conceptual framework (Figure 1b), in Figure 4 we suggest that the driver T 

(time since last sediment transport event) modulated by the driver S (development status of stabilizing 

structures) triggers a series of changes in physical, microbial and biogeochemical dimensions of 

DRBs that move these habitats to a certain extent towards soils. Yet, the rate of change of each 

dimension is different (Figure 4). Among the descriptors examined in this paper, many physical 
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features (e.g. horizons and aggregates) need far more time to develop than the relative short time 

periods between sediment transport events. In contrast, biogeochemical conditions in DRBs, generally 

more amenable to changes in response to environmental factors (e.g. water availability), can become 

similar to soils more rapidly (Romaní et al., 2017). Further, different structural and functional 

attributes can interplay and facilitate each other. For instance, the establishment and growth of 

terrestrial plants will favor the development of aggregates, at the same time creating habitat for 

specific terrestrial microorganisms.  

Our review suggests that DRBS and soils may share key drivers/controlling factors of biogeochemical 

processes and their rates. The power of our conceptual model (Figure 1b and Figure 4) resides in 

summarizing the structural and functional changes that occur in DRBs towards their gradual 

development to soils. However, the application of the model requires consideration of concurrence, so 

that key drivers across climates and scales can be incorporated. For instance, while photodegradation 

plays an important role in arid regions, such a role can be of low relevance in temperate zones in 

forested catchments (del Campo and Gómez, 2016). The importance of concurrence is well reflected 

in the reverse pattern of vegetation observed in arid regions, where DRBs can sustain much more 

vegetation and OM than uphill soils compared to temperate ones (Figure 1c ii and iii; Scott et al., 

2013).  

Progress in understanding highly dynamic IRES has been limited by a lack of knowledge and 

empirical studies on dry phase dynamics (e.g. no data are available on net primary production for 

DRBs; Table 2). Part of this knowledge gap about IRES appears related to the fact that DRBs have 

been considered irrelevant for ecosystem functioning and traditionally ignored by freshwater scientists 

(Steward et al., 2012). As reported here, growing research in this direction clearly refutes this 

contention (e.g. Arce et al., 2014; Gómez-Gener et al., 2015; Merbt et al., 2016; von Schiller et al., 

2014). Further, methodological limitations of approaches developed from and for fluvial 

biogeochemistry within an aquatic framework contributed to this functional overlook of DRBs.  
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Our comparison of physical and biogeochemical properties between soils and DRBs reflects that 

DRBs exhibit both parallels and differences with terrestrial soils and share many mechanistic 

responses to environmental change. Parallels in drivers of biogeochemical processing can be highly 

dependent on climatic zone and landscape context (e.g. geomorphology, dominant biota). While 

drying-rewetting effects can be widely transferred to DBRs across biomes, the action of other drivers 

and constraints that influence biogeochemistry at regional scales (e.g. solar radiation, temperature, 

OM inputs) may not be easily transferable across regions. Thus, identifying primary controls of 

biogeochemical processes in soils is a first step to understand target controls predicting 

biogeochemical responses in DRBs in the same landscape.  

On the other hand, we still ignore many aspects about how biotic assemblages (microbes, plants and 

animals), their drivers, dynamics and influence on biogeochemical activity could converge between 

DRBs and soils (Sabater et al., 2016; Sanchez-Montoya et al., 2017). Compared with soils, we found 

a paucity of studies examining biogeochemical aspects of DRBs and thus more research in DRB 

biogeochemistry must become a priority. Large-scale collaborative initiatives also are key 

opportunities to expand the knowledge of DRB biogeochemistry across biomes, for instance the 1000 

Intermittent Rivers Project (https://1000_intermittent_rivers_project.irstea.fr) and the DryFlux 

GLEON initiative (http://www.ufz.de/dryflux/), the latter explicitly designed to estimate C emissions 

from concurrent DRBs and upland soils.  

Our paper emphasizes the strong link between IRES and their catchments and stresses that IRES 

research allows the integration of terrestrial and aquatic disciplines to understand landscape 

biogeochemistry. Together with the recent empirical evidence on DRB biogeochemistry, the transfer 

of soil science also contributes to expand previous concepts developed to explain the general 

functioning of IRES. In their conceptual paper, Larned et al. (2010) contend that IRES function as 

punctuated longitudinal bioreactors of material transformation, featuring higher rates during inundated 

periods (or flowing sites) than during dry periods. We have seen, however, that DRBs, as soils, can 

support higher rates of certain biogeochemical processes such as aerobic CO2 emissions and 

nitrification compared with flowing waters (Gómez-Gener et al., 2015; Merbt et al., 2016; von 
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Schiller et al., 2015). We suggest that specific environmental requirements of target biogeochemical 

pathways should be considered when formulating predictions based on water fluctuations at the whole 

river scale.  

It is worth noting here that a functional understanding of DRBs also is critical beyond the dry phase. 

For example an important biogeochemical effect of DRBs is the release and export of nutrients once 

flow resumes (Arce et al., 2014; Butturini et al., 2003; Gómez et al., 2012; Merbt et al., 2016; 

Skoulikidis and Amaxidis, 2009; Skoulikidis et al., 2017b). From a management perspective of water 

resources, DRBs must be viewed as an integral part of fluvial networks since what happens in them 

can greatly determine the nutrient status and ecosystem services in aquatic phases of downstream 

reaches.  

We encourage freshwater biogeochemists to adopt the perspective and knowledge of soil science, a 

discipline with a long and consolidated trajectory, to carry out research on DRBs. Transferring field 

and laboratory approaches from soil science to mechanistically understand DRBs, as well as 

providing explanatory and merging models of biogeochemical fluxes that encompass aquatic and dry 

phases with surrounding soils will definitely enhance the understanding of the role of DRBs and IRES 

across temporal and spatial scales. Lastly, we expect this paper to reinforce the idea that merging 

concepts and perspectives from terrestrial and aquatic sciences, traditionally separate disciplines 

(Dollar et al., 2007), are necessary to gain a complete understanding of ecosystems where connections 

between terrestrial and aquatic elements are tight (Grimm et al., 2003), as demonstrated for IRES.  
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