Accepted Manuscript

A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science

María Isabel Arce, Clara Mendoza-Lera, María Almagro, Núria Catalán, Anna M. Romaní, Eugènia Martí, Rosa Gómez, Susana Bernal, Arnaud Foulquier, Michael Mutz, Rafael Marcé, Annamaria Zoppini, Giulia Gionchetta, Gabriele Weigelhofer, Rubén del Campo, Christopher T. Robinson, Alan Gilmer, Martin Rulik, Biel Obrador, Oleksandra Shumilova, Sanja Zlatanović, Shai Arnon, Petr Baldrian, Gabriel Singer, Thibault Datry, Nikos Skoulikidis, Britta Tietjen, Daniel von Schiller

PII:	S0012-8252(18)30059-X
DOI:	https://doi.org/10.1016/j.earscirev.2018.12.001
Reference:	EARTH 2741
To appear in:	Earth-Science Reviews
Received date:	26 January 2018
Revised date:	8 November 2018
Accepted date:	1 December 2018

Please cite this article as: María Isabel Arce, Clara Mendoza-Lera, María Almagro, Núria Catalán, Anna M. Romaní, Eugènia Martí, Rosa Gómez, Susana Bernal, Arnaud Foulquier, Michael Mutz, Rafael Marcé, Annamaria Zoppini, Giulia Gionchetta, Gabriele Weigelhofer, Rubén del Campo, Christopher T. Robinson, Alan Gilmer, Martin Rulik, Biel Obrador, Oleksandra Shumilova, Sanja Zlatanović, Shai Arnon, Petr Baldrian, Gabriel Singer, Thibault Datry, Nikos Skoulikidis, Britta Tietjen, Daniel von Schiller , A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth (2018), https://doi.org/10.1016/j.earscirev.2018.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science

María Isabel Arce^{1, 2}*[¥]; Clara Mendoza-Lera^{3,4 ¥}; María Almagro⁵; Núria Catalán⁶; Anna M. Romaní⁷; Eugènia Martí⁸; Rosa Gómez⁹; Susana Bernal^{8,10}; Arnaud Foulquier¹¹; Michael Mutz⁴; Rafael Marcé⁶; Annamaria Zoppini¹²; Giulia Gionchetta⁷; Gabriele Weigelhofer¹³; Rubén del Campo⁹; Christopher T. Robinson¹⁴; Alan Gilmer¹⁵; Martin Rulik¹⁶; Biel Obrador¹⁰; Oleksandra Shumilova¹; Sanja Zlatanović⁴; Shai Arnon¹⁷; Petr Baldrian¹⁸; Gabriel Singer¹; Thibault Datry³; Nikos Skoulikidis¹⁹; Britta Tietjen²⁰; and Daniel von Schiller²¹

* Corresponding author: marisarce@cebas.csic.es, tlf: +34968 396396

[¥]Authors contributed equally to the development of the manuscript

Affiliations

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587
 Berlin, Germany

(2) Center for Edafology and Apply Biology of Segura (CEBAS-CSIC), Campus Espinardo, PO Box164, 30100 Murcia, Spain

(3) Irstea, UR RiverLy, centre de Lyon-Villeurbanne, 69625 Villeurbanne, France

(4) Department of Freshwater Conservation, BTU Cottbus-Senftenberg, Seestr. 45, 15526 Bad Saarow, Germany

(5) BC3-Basque Centre for Climate Change, Sede Building 1, 1st floor, Scientific Campus of the University of the Basque Country, 48940 Leioa, Basque Country, Spain

(6) Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain

(7) Institute of Aquatic Ecology, University of Girona, Maria AurèliaCapmany 69, 17003 Girona, Spain

(8) Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB-CSIC)C/Accés Cala St. Francesc 14, 17300 Blanes, Spain

(9) Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain

(10) Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Av Diagonal, 643, E-08028, Barcelona, Spain

(11) Université Grenoble Alpes, Laboratoire d'Écologie Alpine (LECA), UMR CNRS-UGA-USMB5553, Grenoble, France

(12) Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.700, 00010Montelibretti (Rome), Italy

(13) University of Natural Resources and Life Sciences Vienna, Gregor Mendel Strasse 33, A-1180Vienna, Austria

(14) Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland

(15) Environmental Sustainability & Health Institute, Dublin Institute of Technology, Greenway Hub,Grangegorman, Dublin D07 H6K8, Ireland

(16) Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic

(17) Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel

(18) Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská1083, 14220 Praha 4, Czech Republic

(19) Hellenic Centre for Marine Research, Insitute of Marine Biological Resources & Inland Waters,46.7 km Athens-Sounion Ave., 19013 Attica, Greece

(20) FreieUniversität Berlin, Biodiversity/Theoretical Ecology, Institute of Biology, Altensteinstr. 34, 14195 Berlin, Germany

(21) Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain

Abstract

Intermittent rivers and ephemeral streams (IRES) encompass fluvial ecosystems that eventually stop flowing and run dry at some point in space and time. During the dry phase, channels of IRES consist mainly of dry riverbeds (DRBs), prevalent yet widely unexplored ecotones between dry and wet phases that can strongly influence the biogeochemistry of fluvial networks. DRBs are often overlooked because they do not strictly belong to either domain of soil or freshwater science. Due to this dual character of DRBs, we suggest that concepts and knowledge from soil science can be used to expand the understanding of IRES biogeochemistry. Based on this idea, we propose that DRBs can be conceptually understood as early stage soils exhibiting many similarities with soils through two main forces: i) time since last sediment transport event, and ii) the development status of stabilizing structures (e.g. soil crusts and/or vascular plants). Our analysis suggests that while DRBs and soils may differ in master physical attributes (e.g. soil horizons vs fluvial sedimentary facies), they become rapidly comparable in terms of microbial communities and biogeochemical processes. We further propose that drivers of DRB biogeochemistry are similar to those of soils and, hence, concepts and methods used in soil science are transferable to DRB research. Finally, our paper presents future research directions to advance the knowledge of DRBs and to understand their role in the biogeochemistry of intermittent fluvial networks.

Key words (4-6): cross-ecosystem research, drought, sediments, aquatic-terrestrial interfaces, temporary, non-perennial

Cherkin Charling Stranger of the second

1. Introduction

Intermittent rivers and ephemeral streams (IRES) encompass fluvial ecosystems that eventually stop flowing and run dry for some extent of time at some point along their course (Acuña et al., 2014; Larned et al., 2010). While intermittent rivers support water flow most year round but fall dry seasonally (normally in summer), ephemeral streams present dry phases lasting beyond a seasonal period and they transport surface water only after intensive rainfall (Uys and O'Keeffe, 1997; Williams, 2006). IRES are likely to account for at least half of the global fluvial network (Datry et al., 2014; Stanley et al., 1997) and they have been described as being more representative of the world's river systems than those with permanent flow (Datry et al., 2017; Williams, 1988). Recent estimates indicate that IRES represent 69% of total stream length, being the dominant watercourse type in arid and semiarid regions (Schneider et al., 2017). Importantly, flow intermittency is expanding worldwide in response to global warming and increased water extraction for human use (Schewe et al., 2014). As a result, interest in IRES research and management is rapidly growing, but the contribution of IRES to global biogeochemical cycles remains unclear (Datry et al., 2017; Leigh et al., 2016). Most biogeochemical studies of IRES have focused on the transition phases, from wet to dry and from dry to wet (e.g. Arce et al., 2014; Corti and Datry, 2012; Romaní et al., 2006; Skoulikidis et al., 2017a; von Schiller et al., 2015). However the dry phase (i.e. the period when no surface water is present) has received little attention so far (Datry et al., 2017; Steward et al., 2012), which makes the understanding of IRES biogeochemistry still incomplete.

Riverbed sediments of IRES during the dry phase, namely dry riverbeds (DRBs), have been recently recognized as valuable ecotones linking dry and wet phases and hosting aquatic, terrestrial, and amphibious communities (Steward et al., 2012). Still, DRBs are often viewed as biogeochemically inert compared to perennial reaches and intermittent reaches during surface-flow periods (Larned et al., 2010; Steward et al., 2012). In fact, recent studies pose DRBs as relevant sites for organic matter (OM) and nutrient cycling along the fluvial network. For instance, OM processing by microbial communities that remain active during dry conditions likely causes release of considerable amounts of carbon dioxide (CO₂) from DRBs to the atmosphere (Marxsen et al., 2010; Zoppini et al., 2014;

Zoppini and Marxsen, 2011), even at higher emission rates than flowing streams and being comparable to upland soils (Gómez-Gener et al., 2016; von Schiller et al., 2014). In addition, DRBs play a fundamental role in landscape nitrogen (N) cycling since they are significant sites for ammonia (NH_4^+) oxidation, a process that provides nitrate (NO_3^-) within fluvial networks (Arce et al., 2014; Gómez et al., 2012; Merbt et al., 2016). Despite their potential relevance, DRBs typically are not considered in biogeochemical budgets at the fluvial network scale (Raymond et al., 2013). This is probably because DRBs are excluded from the domains of both aquatic and terrestrial science, and thus conceptually placed in a scientific "no man's land" (Steward et al., 2012).

Figure 1. (a) Degree of similarity between soils and different types of watercourses as a function of the duration of the dry phase. (b) Conceptual framework indicating how dry riverbeds (DRBs) of nonperennial watercourses (intermittent and ephemeral) may become similar to soils as a function of two main drivers: time since the last sediment transport event (T), and development status of stabilizing structures such as soil biocrusts and/or vascular plants (S). Note that the conceptual framework operates under the spatial concurrence of DBRs and soils involving similar climate, topography,

parental material and organisms. The conceptual model shows that any flow event reducing T in DRBs will interrupt their trajectory of similarity to soils and move DRBs away from soils; the decrease in similarity resulting from flow resumption events will be more intense in intermittent DRBs (with lower starting point at S) than in ephemeral DRBs (with higher starting point at S). (c) DRBs with variable plant coverage: i: intermittent stream in France (El Aiguebrun, Vaucluse, photo by B. Launay), ii: ephemeral stream in northern Spain (Barranco de las Cortinas, Bardenas Reales, Navarra, photo by D. von Schiller) and iii: ephemeral stream in southern Spain (Rambla de la Parra, Murcia, photo by R. Gómez).

Unlike continuously inundated riverbeds of perennial watercourses, DRBs of non-perennial watercourses are transitional habitats that move away from an aquatic to a terrestrial status and become "terrestrialized" by acquiring similar features to nearby soils (Figure 1a; Elosegi et al., 2010; Morandi et al., 2014; Thorp et al., 2006; Ward, 1998; Ward et al., 1998). When the constraints imposed by flowing surface water disappear, other constraints similar to those affecting soils will determine the biogeochemistry of DRBs (O'Neill et al., 1986). Similar to that of hydrologically dynamic floodplain systems (Schiemer, 1999), in non-perennial watercourses, the degree of "terrestrialization" and similarity to soils is linked highly to the duration of the dry phase (lack of surface water) and to inundation frequency (e.g. Harms and Grimm, 2012; Harms et al., 2009; Mori et al., 2017). These features are controlled by climate and local geomorphologic conditions, and shape the exposition of DRBs to inundation events (e.g. position in the fluvial network and connection with the main watercourse). Thus, the degree of similarity between soils and DRBs will be more prominent in sites with long dry phases and less frequent flow events (Figure 1a). DRBs and soils are composed of a complex mixture of the same constituents (i.e. rocks, minerals, OM, and assemblages of plants, animals and microorganisms). Both habitats are organized in a mosaic-like pattern of bed substrates and pedotops, respectively, and filter, store, and transform energy and nutrients.

Given the potential similarities between DRBs and soils, we suggest that soil science can provide freshwater scientists fruitful information to better understand the biogeochemistry of DRBs and their role in fluvial networks. Research methods, paradigms and models used to investigate biogeochemical processes in DRBs and their response to environmental factors could emerge from soil science rather than from freshwater science. Indeed, biogeochemical concepts in freshwater science that are mostly

based on perennial running waters cannot be applied strictly to DRBs, e.g. the Nutrient Spiraling Concept (Newbold et al., 1981; Webster and Patten, 1979; but see the Telescoping Ecosystem Model Fisher et al., 1998). Also, because DRBs are shaped by sediment transport and flow events, certain basic principles linked to soil science such as vertical distribution of soil profiles and steady state assumptions based on stability of energy and material budgets over time are difficult to apply to DRBs (Blume et al., 2016; Huggett, 1998; Nadelhoffer et al., 1998). Conversely, DRBs fit into many concepts derived from soil science, especially those regarding biogeochemical responses to water pulses (Austin et al., 2004; Belnap et al., 2005). For example, rainfall and flood events in DRBs lead to increased carbon mineralization and emissions of CO₂ (Fromin et al., 2010; Gallo et al., 2014), a process that has been previously well described in soils and known as the "Birch effect" (Birch, 1958). However, freshwater research has paid little attention to these ideas so far. Given that soilforming processes (weathering, leaching, mineral formation and destruction, podsolization, and humus development) occur at time scales from years to thousands of years, DRBs can be considered as a type of relatively early stage soil type, like fluvisols. These are young soils that develop from alluvial deposits with weak horizon development that are flooded periodically by surface waters or rising groundwater (Blume et al., 2016; FAO, 2006; Grimm et al., 2003; Soil Survey Staff, 2014).

We propose that DRBs can be conceptually understood as young soils that evolve gradually towards a more mature stage soil-like, a process functioning from two main forces (**Figure 1b**): time since last sediment transport event (T), and development status of stabilizing structures such as soil crusts or vascular plants (S). We consider as reference an upland soil, since riparian soils or floodplains can be seen as intermediate stages in this evolution of similarity. The proposed conceptual framework is based on the assumption that soils and DRBs occur in close proximity so that parent material, climate, topography and biotic community can be considered equivalent (i.e. concurrent; see section 2 for further details). For example, a valley soil where there is much deposition of fine material and soil depth is high (Blume et al., 2016) should not be compared with a headwater DRB where erosion is high and the riverbed is dominated by coarse material, which is more similar to a hillslope soil (Allan and Castillo, 2007; Blume et al., 2016). The particular hydrological regime of a non-perennial

watercourse has fundamental implications for our conceptual model by determining the degree of development of stabilizing structures (S) at the beginning of T (Figure 1b, and c ii, iii). In ephemeral streams, DRBs often present a certain degree of terrestrialization with the presence of terrestrial plants as stabilizing structures (Fossati et al., 1999; Stromberg et al., 2017) similar to those developed in gravel bars subject to episodic dry and flood phases (Figure 1b, and c ii, iii; e.g. Bätz et al., 2014; Mardhiah et al., 2014; McBride and Strahan, 1984). Thus, in our conceptual framework, DRBs of ephemeral streams may exhibit features more similar to soils by showing a higher degree of development of stabilizing structures (higher S, Figure 1b, Figure 1c ii, iii) when compared to DRBs of intermittent rivers that commonly lack such types of vegetation (Figure 1b, Figure 1c i). Further, any flow resumption determining the duration of T will temporarily move back the DRB to the aquatic state, thereby resetting their "trajectory" toward soil; this reset being more intense in intermittent than ephemeral DRBs (Figure 1b).

Conceptually, from this perspective, DRBs increasingly resemble soils along structural and functional dimensions as the hydrological regime shifts from intermittent (time "T" seasonal- dependent) to ephemeral (time "T" supra-seasonal dependent with episodic flow events; Uys and O'Keeffe, 1997; Williams, 2006). Based on this conceptual framework, we explore the potential of using knowledge from soils to study the biogeochemistry of DRBs by comparing key structural (physical and microbiological) and functional (biogeochemical processes) attributes of both types of habitats. As exposed above, our comparisons are based on the assumption of spatial concurrence of both habitats. Because the research interest of the authors centers on OM and nutrient cycling, the treatment of biogeochemistry refers mainly to these functional properties. By comparing soils and DRBs, we aim to improve the understanding of IRES biogeochemistry and provide insights for modeling at multiple spatio-temporal scales.

2. Physical structure of DRBs and soils and their geomorphological drivers

Figure 2. Diagram of a soil profile (left) and a dry riverbed profile (DRB, right) showing major similarities and differences in physical, geomorphological, hydrological and biological properties. Soil formation is mainly a local process that results in the development of its horizons that further determine their physical, microbial and biogeochemical features. DRB structure and formation depend on deposition and sorting processes during sediment transport that result in sedimentary facies characterized by sorting of sediment particles. During the dry phase, local formation processes will favour the development of aggregates in DRBs. The position of DRBs and soils within the landscape will influence oscillations in groundwater level, likely more frequent in DRBs that have subsurface flow and lateral fluxes. The presence of vegetation in soils will favour evapotranspiration and limit the infiltration of water, while the low biomass or complete lack of vegetation of DRBs will reduce evapotranspiration and favour infiltration of water as well as temperature fluctuations and gas exchange. The presence of roots and rhizosphere in soils will further favour the development of aggregates will differ between soils and DRBs as a result of the different content and distribution of OM and presence of vegetation.

Soil formation occurs through disintegration, decomposition, recomposition and aggregation of mineral material contained in exposed rocks by physical and chemical processes. This material is further conditioned by biological activity and culminates in the formation of the characteristic soil profile (**Figure 2**; Blume et al., 2016; Hillel, 2003). A soil profile is composed of a number of horizontal layers (i.e. soil horizons) that differ in colour, physical structure and chemical characteristics from the parent material (**Figure 2**; Blume et al., 2016; Jones et al., 2005; Weil and Brady, 2016). In contrast, DRBs result from the transport and deposition result in a complex arrangement in strata, characterized by overlapping sedimentary layers of different grain size distributions (**Figure 2**; Bridge, 2003; Gordon et al., 2004). Due to different formation processes, parent material may differ with soils being mainly composed of a mixture of organic and mineral compounds of autochthonous origin while DRBs can be considered being composed of allochthonous material. Still, DRBs are inherently linked to the eroded soils and slopes from which they come from (Boix-Fayos et al., 2005; Boix-Fayos et al., 2015; Jaeger et al., 2017; Rhoton et al., 2006). Due to this strong link between soils and DRBs, concurrence must be considered when applying our conceptual model (see above).

The genesis of both soils and DRBs is linked to the topography, lithology and geomorphological dynamics occurring at different spatial and temporal scales. At the catchment scale, and depending on local soil characteristics, land-use, climate, erosion processes (rill, inter-rill, gully, bank and channel erosion, landslides) and their interaction will ultimately determine the particle size, the amount and quality of OM and nutrients transported and redistributed within the catchment, and to the fluvial network (de Vente and Poesen, 2005; Haregeweyn et al., 2008; Hoffmann et al., 2013; Kusnierz and Sivers, 2018; Nadeu, 2013; Nadeu et al., 2012; Nadeu et al., 2011; Scott et al., 2013; Wang et al., 2010). At hillslope and reach scale, geomorphology will determine the physical characteristics of soils and DRBs. For instance, in a sub-humid Mediterranean catchment, the similarity between soils and alluvial bars and wedges in some physico-chemical properties (e.g. texture, micro-aggregates, and organic carbon content) strongly depended on the distance from source areas and sediment connectivity (Boix-Fayos et al., 2015; Nadeu et al., 2012; Nadeu et al., 2011).

The formation processes result in differences in the physical characteristics of soils and DRBs (**Table 1**). From a biogeochemical perspective, water content, bulk density, OM, hydraulic conductivity and fine particle content are the most relevant physical properties. These properties modulate gas and water fluxes, temperature distribution and habitat availability (Blume et al., 2016). In soils, gas fluxes and infiltration and evaporation of water can be reduced by the organic horizon with abundant fine particles (**Table 1** and **Figure 2**; Franzluebbers, 2002; Minasny and McBratney, 2017). Fine particles reduce porosity, enhance thermal conductivity and buffer temperature oscillations (Blume et al., 2016). As a result of the transport and deposition formation processes, DRBs tend to have coarser particles (more sand and less clay) compared to soils, and they are generally depleted in OM and nutrients that are patchily distributed (Boix-Fayos et al., 2015; Frossard et al., 2015; Gómez-Gener et al., 2016; Smith et al., 2013; Stacy et al., 2015). As observed in bare soils (e.g. Smits et al., 2012), the coarser texture and lower OM in DRBs will result in higher water infiltration and evaporation, gas fluxes, and oscillations in temperature (**Table 1**; Blume et al., 2016; Zribi et al., 2015).

Physicochemical property	Soils	DRBs	Reference
Spatial arrangement	Horizons (<i>in situ</i> formation)	Sedimentary structures (deposited material)	FAO, 2006
Profile depth	variable	variable	
Dominant grain size	< 2mm	> 15mm	Boix-Fayos et al., 2015; Frossard et al., 2015; Gómez-Gener et al., 2016; Stacy et al., 2015
Sand content (2000-63 µm)	low	high	Boix-Fayos et al., 2015; Doetterl et al., 2012; Gómez-Gener et al., 2016; Nadeu et al., 2011; Rhoton et al., 2006
Clay content	high	low to medium	Boix-Fayos et al., 2015; Doetterl et al., 2012; Gómez-Gener et al., 2016; Rhoton et al., 2006
Macroaggregates (>2mm)	high	low	Bätz et al., 2014; Mardhiah et al., 2014
Microaggregate (63-250 µm)	high	low	Bätz et al., 2014; Mardhiah et al., 2014

* Based on grain size distribution and clay content

Table 1. Comparison of key physico-chemical properties of soils and dry riverbeds (DRBs).

During the dry phase, the physical characteristics of DRBs will be more influenced by local formation processes as in soils. A key property of soils will begin to develop and gain significance: so-called aggregates (**Figure 1b and 2**; Mardhiah et al., 2014; Totsche et al., 2017). Aggregates (micro- and macro-) consist of a group of soil particles that adhere to one another more strongly than to surrounding soil particles (**Table 1**, **Figure 2**; Follet et al., 2009). Aggregates result from the interaction of many factors, including micro-environmental conditions (mainly water availability and temperature), soil properties, and presence of bioengineers (plants, mycorrhizal hyphae, invertebrates and microorganisms; An et al., 2010; Bätz et al., 2014; Chotte, 2005; Kay, 1998; Miltner et al., 2012; Verchot et al., 2011). Depending on their size and porosity, aggregates influence the physical properties of soils: movement and storage of water, diffusion of solutes, redox gradients, microbial community structure and vegetation development (Gregorich et al., 2003; Mora-Gómez et al., 2015;

Sollins et al., 1996; Verchot et al., 2011). Aggregates are often considered as biogeochemical hotspots (Ebrahimi and Or, 2016; Lee et al., 2012; Rillig et al., 2017; Vos et al., 2013); in fact, soil quality is often expressed as the degree of aggregation (Bronick and Lal, 2005). Raindrops, erosion, scouring and drying easily disrupt aggregates (Blankinship et al., 2016; Boix-Fayos et al., 2015; Hillel, 2003), and once they reach the stream by water flow runoff, they undergo flocculation processes that totally alter their physical structure (Droppo et al., 2005). Therefore, the presence and significance of aggregates in DRBs at early stages of the dry period might be limited compared to soils and are increasingly formed as roots and fungi develop (**Figure 2**; Bätz et al., 2014; Mardhiah et al., 2014).

Vegetation establishment plays a key role in the physical characteristics of DRBs. First, the development of vegetation and biocrusts stabilizes the sediment (Figure 1b) and is a pedogenic force that modifies its physical structure that favors the development of aggregates and macropores, creating new habitats (rhizosphere) for terrestrial microorganisms (Bätz et al., 2014; Gutiérrez and Jones, 2006; Verboom and Pate, 2006). Second, similar to the effect of riparian vegetation, the presence of vegetation in DRBs can modulate exposure to wind and solar radiation as well air humidity, ultimately determining temperature distributions and water and gas fluxes (Figure 1 c iii; Fossati et al., 1999; Hillel, 2003; Li et al., 2016; Stromberg et al., 2017). The development of vegetation in DRBs is also associated to geomorphological processes, such as river incision, that cause changes in the frequency and intensity of sediment transport events and lowers groundwater levels (Auble et al., 1994; Bombino et al., 2013; Ellery et al., 1993; Poff, 1997). Due to their position in the landscape (i.e. topography), the groundwater table in DRBs tends to be closer to the surface than in soils; in fact, DRBs can support subsurface flow despite the lack of continuous flowing surface water (Figure 2; Costigan et al., 2016, 2017; Marxsen et al., 2010). As a result of the more superficial groundwater table and/or subsurface flow, riparian ecosystems that border perennial to intermittent rivers and streams in dryland regions have substantially more biomass and greater productivity than the surrounding terrestrial vegetation (Scott et al., 2013). Therefore, the development of vegetation and stabilizing structures in DRBs might be favoured by groundwater table and subsurface flow as in ephemeral streams (Figure 1c iii).

3. Biogeochemistry of DRBs and soils

In this section, we compare the main microbial and biogeochemical properties involved in OM and nutrient cycling in soils and DRBs by using information from the available literature and by examining how different physical factors (e.g. vegetation, texture; **Figure 2** and **Table 1**) can drive differences in specific biogeochemical properties (**Table 2**). In general, we approach the comparison between the two habitat types from the temporal perspective of desiccation of DRBs (early or late stages). Due to the relevance of water availability for biogeochemical reactions in water-limited systems such as DRBs, we further examine and compare the functional response of soils and DRBs to changes in water availability.

Biogeochemical process	Soils	DRBs	References			
Leaf litter decomposition (d ⁻¹)	0.0012-0.0072 ^{d,e,f}	0.0005 - 0.0032 ^{a,b,c}	^a Abril et al., 2016; ^b Corti et al., 2011; ^c Riedl et al., 2013; ^d Almagro et al., 2010; ^c Langhans et al., 2006; ^f Langhans et al., 2008			
Net primary production $(mg C m^{-2} d^{-1})$	800-3000 ^{g.,h, d}	No data available	^g Ni et al., 2001; ^h Michaletz et al., 2014			
CO_2 emissions measured <i>in situ</i> (chamber; mg C m ⁻² d ⁻¹)	65–2500 ^{i. j}	74– 1728 ^{i-j, d, k, l, m}	ⁱ Gómez-Gener et al., 2016; ^j Gómez-Gener et al., 2015; ^k Bond- Lamberty and Thomson, 2010; ^l Raich and Schlesinger, 1992; ^m Raich et al., 2002			
Extracellular enzyme activities (nmol h^{-1} cm ⁻²)						
β-glucosidase	3320 ⁿ	5 – 225°				
Leucine aminopeptidase Alkaline phosphatase	1450 ⁿ 5300 ⁿ	$0 - 180^{\circ}$ 50 - 300°	ⁿ Sinsabaugh et al., 2008; ^o Timoner et al., 2012			

^{*}Net primary production was computed as the sum of annual production of roots, stems, branches, and reproductive (when available) and foliage components.

 Table 2. Comparison of biogeochemical processes in soils and dry riverbeds (DRBs). When paired

 studies were not available, individual studies undertaken under arid, semiarid, and Mediterranean

conditions were selected by assuming that arid and semiarid DRBs would likely be the most similar to uphill soils.

Figure 3. Diagram representing the main processes and fluxes of organic matter (OM) and nutrients (N and P) occurring in soils and dry riverbeds (DRBs). Different sizes of boxes and arrows represent

differences in the relative importance of each compartment and process, respectively. Gas fluxes are represented in blue color. Terrestrial OM sources dominate in soils, while both aquatic and terrestrial OM sources are present in DRBs. The OM pool is divided into labile and stable OM, the latter being more relevant in soils together with organo-mineral complexes (i.e. associations of organic matter and mineral particles) that play an important role in adsorption-desorption processes of primary nutrients (N and P). The rhizosphere in soils plays a relevant role in nutrient dynamics as well as being a source for labile dissolved OM (DOM). In DRBs, sediment mobility can determine the amount of litter material buried in deep sediments, acting as OM decomposition hotspots as well as microbial refuge.

3.1 Microbial community composition

Microbial communities regulate biogeochemical cycles in ecosystems (Rousk and Bengtson, 2014). The degree of similarity between DRBs and soils in terms of microbial community composition depends both on deterministic (i.e. environmental filtering) and stochastic processes (i.e. dispersal from adjacent terrestrial ecosystems). Similar to soils, microbial community composition in DRBs is likely driven by OM and nutrient availability, colonizable surfaces, redox conditions, texture, aggregates and humidity (Girvan et al., 2003; Johnson et al., 2003; Marschner et al., 2003; Rillig et al., 2017). In DRBs, together with increases in OM and nutrients, the progressive development of aggregates can contribute to enhance the degree of similarity of microbial communities with soils. While recent research suggests that bacterial, fungal and archaeal communities along a terrestrialaquatic gradient are dominated by specialist microorganisms specific to a particular habitat (Monard et al., 2016), a study in boreal systems concluded that between 20-35% of freshwater bacteria are of terrestrial origin (Ruiz-González et al., 2015). Therefore, despite local differences, microorganisms of terrestrial origin could increase the degree of similarity between soils and DRBs in combination with increases in OM content and aggregate development. Together with physical properties of sediment/soil, the degree of similarity between DRBs and soil microbial communities also will be driven by dispersal and colonization from adjacent terrestrial ecosystems, groundwater, and hyporheic zones of taxa with specific habitat requirements (Febria et al., 2012; Febria et al., 2015; Mering et al., 2007; Monard et al., 2016; Sabater et al., 2016; Timoner et al., 2014).

In addition to dispersal and the physical properties of soils and DRBs, we expect the similarity between DRB and soil communities to be linked to water fluctuations (drying, subsurface and surface flow, groundwater table oscillations and rainfall). Drying stress in soils is a fundamental driver of compositional changes of communities that selects taxa able to cope with osmotic stress (Fierer and Schimel, 2002; Schimel et al., 2007; Zoppini et al., 2014; Zoppini and Marxsen, 2011; Pohlon et al., 2013). Water fluctuations can cause drying-rewetting stress, thereby selecting osmotic stress resistant microbial communities in both soils and DRBs (Borken and Matzner, 2009; Fromin et al., 2010; Lundquist et al., 1999; Schimel et al., 2007). Recent research has reported similar mechanisms between soils and DRBs to cope with drying-rewetting stress; for instance, thicker cell walls in gram positive bacteria and fungi (Lennon et al., 2012; Manzoni et al., 2006; Schimel et al., 2007; Zeglin et al., 2013), and production of extracellular polymeric substances by biofilms to increase sediment/soil water holding capacity and growth at lower water potentials (Chenu, 1993; Flemming and Wingender, 2010; Or et al., 2007; Romaní et al., 2013; Rosenzweig et al., 2012; Sabater et al., 2017).

3.2 OM cycling

In general, the higher plant biomass developed in soils compared to DRBs determines higher OM standing stocks and higher C:N elemental ratios in soils than in DRBs (**Table 1**). Moreover, while soils are fueled only by terrestrial OM sources, both aquatic and terrestrial sources contribute to OM pools in DRBs (**Figure 3**). At the first stages of drying in DRBs, OM stocks from the preceding aquatic phase (e.g. biofilms and macrophytes) are especially relevant (Ylla et al., 2010). These autochthonous sources are of high nutrient quality (low C:N elemental ratio; Artigas et al., 2008) and provide labile OM that can support high microbial activity, similar to patterns described in primary soils after glacier retreat or in deserts (Bradley et al., 2015). Furthermore, variability in OM stocks in DRBs during early desiccation stages can result in higher heterogeneity of DOM and particulate OM (POM) compared to soils.

Throughout the dry period in DRBs, we expect that both OM quantity and quality of DRBs become similar to those of surrounding soils due to leaf litter inputs from riparian zones and development of

terrestrial vegetation (Acuña et al., 2007; McClain et al., 2003; Stegen et al., 2016b). In soils, root production represents a considerable OM source (Schmidt et al., 2011; Silver and Miya, 2001; Williams, 1988). While roots are a more stable or recalcitrant OM source than leaf litter (Austin et al., 2009; Kemp et al., 2003), root exudates provide a labile C source to microbial assemblages of rhizospheres (Wagener et al., 1998) that is lower in DRBs (Kallenbach et al., 2016). In general, higher and more stable OM content is expected in soils (Schimel and Schaeffer, 2012) and lower but more labile OM content is expected in DRBs (**Figure 3**; Axmanová and Rulík, 2005; Trulleyová et al., 2003). However, this general pattern may be modified in arid and semiarid regions where vegetation is limited to riparian zones and within DRBs. Here, a greater amount of OM may accumulate in DRBs compared with adjacent soils (**Figure 1c iii**; Fossati et al., 1999; Steward et al., 2012).

Disparities in OM quality and quantity between soils and DRBs may translate as differences in OM decomposition rates and ultimately in C cyling (Belay-Tedla et al., 2009; Swift et al., 1979). However, other environmental and biological factors also should be taken into account (pH and microbial stoichiometry demand; Schimel and Schaeffer, 2012; Sinsabaugh, 2010; Sinsabaugh and Follstad Shah, 2011) as well as the interaction between stable OM and labile OM pulses (i.e. priming; Kuzyakov, 2010). In soils and DRBs, extracellular enzyme activities (EEAs) exert a strong control on microbial decomposition of OM (Burns et al., 2013), even under dry conditions (Zoppini et al., 2014; Zoppini and Marxsen, 2011). The presence of specific EEAs also reflect the origin and quality of OM (Chróst, 1991; Kotroczó et al., 2014). For instance, the ratio of β -glucosidase (involved in the decomposition of simple polysaccharides) to phenoloxidase activity (involved in the degradation of lignin compounds) is reduced in soils in contrast to streambed sediments, suggesting sediment OM is more labile than soil OM (Sinsabaugh et al., 2012). The greater capacity to degrade stable OM compounds in soils can be linked to higher fungal biomass in terrestrial ecosystems because fungal communities play a major role in ligno-cellulose degradation (Burns et al., 2013; Romaní et al., 2006).

Disparities in nutrient availability and OM stoichiometry can also determine contrasts in OM bioavailability and decomposition between soils and DRBs. For instance, decomposing OM generally

exhibits higher C:N elemental ratios in soils than DRBs (**Table 1**), and thus greater N limitation is expected in the former. Lower C:N elemental ratios together with lower OM content suggest heterotrophic activity to be constrained by C availability to some extent in DRBs. We thus hypothesize that this might determine higher values of C to N acquisition enzymes in DRBs compared to soils (**Table 2**; Sinsabaugh et al., 2012).

Differences in OM cycling between DRBs and soils can also be the result of a distinct contribution of terrestrial invertebrates to OM degradation. Terrestrial invertebrates can play a relevant role in the pre-conditioning of POM in DRBs, especially at the beginning of the dry phase when they are attracted by fresh POM of aquatic origin (e.g. dead algae, invertebrates, and fish; Corti and Datry, 2012). Yet, the action of invertebrates in soil OM cycling can persist over time in both shallow and deep layers (Doblas-Miranda et al., 2009).

Abiotic factors are also important drivers of OM decomposition. For instance, in open canopy DRBs or soils decomposition of OM can be strongly influenced by solar radiation and temperature (Almagro et al., 2017; Lee et al., 2012; Steward et al., 2012). Exposition to solar radiation promotes photodegradation and chemical alterations of plant material (Almagro et al., 2015), conditioning it for subsequent biodegradation (del Campo and Gómez, 2016; Fellman et al., 2013). The effect of solar radiation on OM degradation is expected to be higher in DRBs than in soils because vegetation cover tends to be lower in the former (**Figure 3**).

In terms of leaf litter decomposition, information gleaned from the literature indicates that decomposition rates are higher in soils than DRBs (**Table 2**). This pattern can reverse if considering how high organic C decomposition rates can be in the hyporheic zone of some IRES (Burrows et al., 2017). In fact, recent studies addressing direct comparisons of CO_2 emissions in the two habitats showed that DRBs are comparable to upland soils (Gómez-Gener et al., 2016; von Schiller et al., 2014). To obtain a complete view of CO_2 fluxes from DRBs, data on net primary production is still required (**Table 2**). Temperature, moisture, and texture are important drivers of CO_2 emissions in both soils and DRBs (Almagro et al., 2009; Almagro et al., 2013; Gómez-Gener et al., 2016). Yet, OM

composition could influence CO_2 emissions to a greater extent in soils than in DRBs, where OM availability could play a major role (Artigas et al., 2008; Gómez-Gener et al., 2016). Therefore, under equal temperature and moisture conditions, respiration could be limited by C to a major extent in DRBs compared to soils.

3.3 Nutrient cycling

There are essential differences between soils and DRBs in how assimilatory and dissimilatory processes regulate nutrient cycling (**Figure 3**). One distinctive aspect regards nutrient availability. In soils, most organic N and phosphorus (P) is bound to humic substances, which may be less available to microorganisms than inferred by elemental ratios (Nannipieri and Eldor, 2009). In contrast, labile sources of organic N and P in DRBs such as decaying biofilms provide labile OM and nutrients, at least during early stages of drying. In vegetated soils, roots and fungal hyphae are responsible for most N and P uptake, and they actively transport nutrients from sites of nutrient supply to sites of nutrient demand (e.g. Fellbaum et al., 2014; Ratliff and Fisk, 2016; Robertson and Groffman, 2015; Unger et al., 2016; Wagener et al., 1998). In DRBs, however, nutrient allocation is driven by photoautotrophic and heterotrophic uptake by microbial assemblages. Noteworthy, differences in nutrient uptake between soils and DRBs may become less obvious when plants develop in DRBs as they may outcompete microbes for nutrient uptake (Baldwin and Mitchell, 2000; Cavanaugh et al., 2006).

Atmospheric deposition and N_2 fixation can be important sources of inorganic N in soils and DRBs (**Figure 3**). Since vegetation has been shown to strongly regulate atmospheric N deposition (Aguillaume et al., 2017; Fenn and Poth, 2004), we expect this process to be higher in soils than DRBs because of higher crust levels and vegetation canopy cover in the former (Belnap et al., 2005). Yet, these differences will ultimately depend on climate and atmospheric pollution, and will disappear as the time since last sediment transport event passes (**Figure 1b**).

As in soils, oxygenation associated with drying creates conditions suitable for aerobic ammonification and nitrification (e.g. Cavanaugh et al., 2006; Gómez et al., 2012; Tzoraki et al., 2007). As a result, inorganic N (NH_4^+ and NO_3^-) accumulates in DRBs as desiccation progresses with time (Arce et al., 2014; Gómez et al., 2012; Merbt et al., 2016). On the contrary, denitrification, an anaerobic process that contributes to the permanent removal of N from any ecosystem (Seitzinger, 1988), is likely low in soils and DRBs because of low or null water saturation conditions, which impede oxygen diffusion and limit anoxic environments. Occasionally, at early stages of drying (water saturated sediments) or during flood events, DRBs can support extended oxygen-depleted habitats suitable for denitrification with higher rates than in upland soils, similar to that in floodplains (Baker and Vervier, 2004; Valett et al., 2005). However, the availability of an electron acceptor (e.g. NO₃⁻ or sulfate) and sufficient C to support microbial metabolism also are required for denitrification to occur. Often, highest denitrification rates have been detected where NO₃⁻ intercepts C rich sites such as plant rooting zones (Jacinthe et al., 1998; Schade et al., 2001). Thus, limited denitrification in well-oxygenated sediments of DRBs at late stages of drying can be alleviated when plants develop in the stream channel, which provide a source of labile C and can promote anoxic microsites within DRBs, and ultimately stimulate heterotrophic metabolism (Schade et al., 2001).

Regarding P cycling, there is little information available for either soils or DRBs. In soils, weathering and mineralization are the most important sources of P (Margalef et al., 2017; Turner et al., 2005), while mineralization in well-aerated porous media may be the predominant P source in DRBs (**Figure 2**). P dynamics are mainly driven by physical and chemical properties of soils and sediments (e.g. Khalid, 1989). P can adsorb to OM, carbonate and clays and also immobilized by biota. Given that DRBs may contain less OM and clay particles than soils, P adsorption is expected to be lower in DRBs. Dieter et al. (2015) and Kinsman-Costello et al. (2016) showed that drying reduced P adsorption and stimulated P mineralization in dry lake sediments, which led to increases in the proportion of labile and soluble P forms. Similarly, mineralization of phosphorylated OM remains active during sediment drying in DRBs (Marxsen et al., 2010; Zoppini et al., 2014; Zoppini and

Marxsen, 2011). As a result, a significant pulsed release of soluble P can occur upon rewetting in DRBs (Keitel et al., 2016; Kinsman-Costello et al., 2016).

3.4 Water as a fundamental driver of biogeochemical variability in soils and DRBs

A major physical factor influencing the variability of biogeochemical processes in soils and DRBs is water availability (Blume et al., 2016; Sabater et al., 2016). Increases in soil water availability (rain, dew, changes in groundwater table) burst respiration, a phenomenon known as "Birch effect" (Birch, 1958; Kim et al., 2012; Placella et al., 2012). In DRBs, following increases in water availability, similar responses have been reported for respiration (Baldwin and Mitchell, 2000; McIntyre et al., 2009; Riedl et al., 2013), primary production (Timoner et al., 2012), nitrification and denitrification (Arce et al., 2014; Skoulikidis and Amaxidis, 2009; Skoulikidis et al., 2017b). In soils, mechanisms behind such biogeochemical bursts are mainly based on the disruption of organo-mineral complexes, understood as aggregates playing a significant role in nutrient sorption-desorption processes (Kinsman-Costello et al., 2016) and the release of intracellular components due to osmotic stress associated with a rapid rise in water potential, resulting in increased labile C and nutrient supply for remaining microorganisms (Birch, 1958; Butterly et al., 2009; Fierer et al., 2003; Griffiths and Birch, 1961).

The increase in water availability linked to pulses of nutrients and C can have multiple effects on microbial dynamics: (i) reactivation of a large number of dormant microbes (Kuzyakov and Blagodatskaya, 2015; Timoner et al., 2012), (ii) shifts in microbial community composition (Griffiths and Philippot, 2013; Stegen et al., 2016a), and (iii) increases in decomposition (Kuzyakov et al., 2000). In soils and DRBs, any increase in pore water content can favor the development of anaerobic habitats (McIntyre et al., 2009) and promote denitrification and emissions of N gas fluxes (Austin and Strauss, 2011; Gallo et al., 2014; Groffman and Bohlen, 1999). Yet, increases in pore water content can limit aerobic mineralization processes such as leaf litter decomposition driven by fungi (Mora-Gómez et al., 2015; Schlief and Mutz, 2011; but see Risse-Buhl et al., 2017). Models developed in desert soils describing the vertical mobilization and transformation of nutrients after rainfall (i.e.

Trigger-Transfer-Reserve Pulse (TTRP); Belnap et al., 2005) would also apply to DRBs during rainfall as well as during early stages of flow resumption (Larned et al., 2010). In combination with the gradual change in DRB development, variability in water availability has great potential to shape DRB biogeochemistry. Thus, application of our conceptual framework should take into account the significant role played by punctuated changes in water availability in DRBs during dry phases.

4. Conclusions and future directions

Figure 4. Conceptual framework indicating the degree of similarity in physical structure, microbial community and biogeochemistry of dry riverbeds (DRBs) of non-perennial watercourses (intermittent and ephemeral) with soils as a function of two main drivers: (T) time since the last sediment transport event, and (S) development status of stabilizing structures such as soil biocrusts or vascular plants.

Expanding our initial conceptual framework (Figure 1b), in Figure 4 we suggest that the driver T (time since last sediment transport event) modulated by the driver S (development status of stabilizing structures) triggers a series of changes in physical, microbial and biogeochemical dimensions of DRBs that move these habitats to a certain extent towards soils. Yet, the rate of change of each dimension is different (Figure 4). Among the descriptors examined in this paper, many physical

features (e.g. horizons and aggregates) need far more time to develop than the relative short time periods between sediment transport events. In contrast, biogeochemical conditions in DRBs, generally more amenable to changes in response to environmental factors (e.g. water availability), can become similar to soils more rapidly (Romaní et al., 2017). Further, different structural and functional attributes can interplay and facilitate each other. For instance, the establishment and growth of terrestrial plants will favor the development of aggregates, at the same time creating habitat for specific terrestrial microorganisms.

Our review suggests that DRBS and soils may share key drivers/controlling factors of biogeochemical processes and their rates. The power of our conceptual model (Figure 1b and Figure 4) resides in summarizing the structural and functional changes that occur in DRBs towards their gradual development to soils. However, the application of the model requires consideration of concurrence, so that key drivers across climates and scales can be incorporated. For instance, while photodegradation plays an important role in arid regions, such a role can be of low relevance in temperate zones in forested catchments (del Campo and Gómez, 2016). The importance of concurrence is well reflected in the reverse pattern of vegetation observed in arid regions, where DRBs can sustain much more vegetation and OM than uphill soils compared to temperate ones (Figure 1c ii and iii; Scott et al., 2013).

Progress in understanding highly dynamic IRES has been limited by a lack of knowledge and empirical studies on dry phase dynamics (e.g. no data are available on net primary production for DRBs; **Table 2**). Part of this knowledge gap about IRES appears related to the fact that DRBs have been considered irrelevant for ecosystem functioning and traditionally ignored by freshwater scientists (Steward et al., 2012). As reported here, growing research in this direction clearly refutes this contention (e.g. Arce et al., 2014; Gómez-Gener et al., 2015; Merbt et al., 2016; von Schiller et al., 2014). Further, methodological limitations of approaches developed from and for fluvial biogeochemistry within an aquatic framework contributed to this functional overlook of DRBs.

Our comparison of physical and biogeochemical properties between soils and DRBs reflects that DRBs exhibit both parallels and differences with terrestrial soils and share many mechanistic responses to environmental change. Parallels in drivers of biogeochemical processing can be highly dependent on climatic zone and landscape context (e.g. geomorphology, dominant biota). While drying-rewetting effects can be widely transferred to DBRs across biomes, the action of other drivers and constraints that influence biogeochemistry at regional scales (e.g. solar radiation, temperature, OM inputs) may not be easily transferable across regions. Thus, identifying primary controls of biogeochemical processes in soils is a first step to understand target controls predicting biogeochemical responses in DRBs in the same landscape.

On the other hand, we still ignore many aspects about how biotic assemblages (microbes, plants and animals), their drivers, dynamics and influence on biogeochemical activity could converge between DRBs and soils (Sabater et al., 2016; Sanchez-Montoya et al., 2017). Compared with soils, we found a paucity of studies examining biogeochemical aspects of DRBs and thus more research in DRB biogeochemistry must become a priority. Large-scale collaborative initiatives also are key opportunities to expand the knowledge of DRB biogeochemistry across biomes, for instance the 1000 Intermittent Rivers Project (https://1000_intermittent_rivers_project.irstea.fr) and the DryFlux GLEON initiative (http://www.ufz.de/dryflux/), the latter explicitly designed to estimate C emissions from concurrent DRBs and upland soils.

Our paper emphasizes the strong link between IRES and their catchments and stresses that IRES research allows the integration of terrestrial and aquatic disciplines to understand landscape biogeochemistry. Together with the recent empirical evidence on DRB biogeochemistry, the transfer of soil science also contributes to expand previous concepts developed to explain the general functioning of IRES. In their conceptual paper, Larned et al. (2010) contend that IRES function as punctuated longitudinal bioreactors of material transformation, featuring higher rates during inundated periods (or flowing sites) than during dry periods. We have seen, however, that DRBs, as soils, can support higher rates of certain biogeochemical processes such as aerobic CO_2 emissions and nitrification compared with flowing waters (Gómez-Gener et al., 2015; Merbt et al., 2016; von

Schiller et al., 2015). We suggest that specific environmental requirements of target biogeochemical pathways should be considered when formulating predictions based on water fluctuations at the whole river scale.

It is worth noting here that a functional understanding of DRBs also is critical beyond the dry phase. For example an important biogeochemical effect of DRBs is the release and export of nutrients once flow resumes (Arce et al., 2014; Butturini et al., 2003; Gómez et al., 2012; Merbt et al., 2016; Skoulikidis and Amaxidis, 2009; Skoulikidis et al., 2017b). From a management perspective of water resources, DRBs must be viewed as an integral part of fluvial networks since what happens in them can greatly determine the nutrient status and ecosystem services in aquatic phases of downstream reaches.

We encourage freshwater biogeochemists to adopt the perspective and knowledge of soil science, a discipline with a long and consolidated trajectory, to carry out research on DRBs. Transferring field and laboratory approaches from soil science to mechanistically understand DRBs, as well as providing explanatory and merging models of biogeochemical fluxes that encompass aquatic and dry phases with surrounding soils will definitely enhance the understanding of the role of DRBs and IRES across temporal and spatial scales. Lastly, we expect this paper to reinforce the idea that merging concepts and perspectives from terrestrial and aquatic sciences, traditionally separate disciplines (Dollar et al., 2007), are necessary to gain a complete understanding of ecosystems where connections between terrestrial and aquatic elements are tight (Grimm et al., 2003), as demonstrated for IRES.

5. Acknowledgements

This paper resulted from discussions conducted as part of working group 3 "Coupled Aquaticterrestrial Biogeochemistry in IRES" based upon work from COST Action CA15113 (SMIRES, Science and Management of Intermittent rivers and Ephemeral streams; www.smires.eu) supported by COST (European Cooperation in Science and Technology). Additional support was provided for MIA by a Alexander von Humboldt grant (Ref: 1162886) and a Juan de la Cierva grant (Ref: FJCI-2015-26192), for CM-L by the GRS Early Career Fellowship from BTU Cottbus-Senftenberg and by the

French Agency for Biodiversity (ONEMA-AFB, Action 13, "Colmatage, échange snappe-rivière et processus biogéochimiques), for MA by the Spanish Government (Ref: DISECO CGL-2014-55-405-R) and by a Juan de la Cierva grant (Ref: IJCI-2015-23500), for NC by a Juan de la Cierva grant (Ref: FJCI-2014-23064), for SB by Spanish Government (Ref:NICUS CGL-2014-55234-JIN), for RG by the Science and Technology Agency of Murcia Region (SENECA Foundation, Ref: 19525/PI/14), and for DvS by Spanish Government (Ref: CGL2016-77487-R) and Basque Government (Ref: IT951-16). Symbols for diagrams used in the art work are courtesy of the Integration and Application Network (ian.umces.edu/symbols).

Author contribution

MIA and CM-L assumed responsibility for the overall manuscript planning and coordination with support by DvS as working group coordinator. MIA and CM-L were responsible for section 1, 3.4 and 4 and further compiled and integrated all sections. MA lead and coordinated section 2. AMR and AF lead and coordinated section 3.1. AMR and NC lead and coordinated section 3.2. SB, EM and RG lead and coordinated section 3.3. GG was responsible for the art work. All authors commented on and contributed to revising draft versions.

6. References

- Abril, M., Muñoz, I. and Menéndez, M., 2016. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Science of the Total Environment, 553: 330-339.
- Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C.N., Ginebreda, A., McGregor, G., Sabater, S., Tockner, K. and Palmer, M.A., 2014. Why should we care about temporary waterways? Science, 343(6175): 1080.
- Acuña, V., Giorgi, A., Muñoz, I., Sabater, F. and Sabater, S., 2007. Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. Journal of the North American Benthological Society, 26(1): 54-69.
- Aguillaume, L., Izquieta-Rojano, S., García-Gómez, H., Elustondo, D., Santamaría, J.M., Alonso, R. and Avila, A., 2017. Dry deposition and canopy uptake in Mediterranean holm-oak forests estimated with a canopy budget model: A focus on N estimations. Atmospheric Environment, 152: 191-200.
- Allan, J.D. and Castillo, M.M., 2007. Detrital energy sources. In: J.D. Allan and M.M. Castillo (Editors), Stream Ecology: Structure and function of running waters. Springer Netherlands, Dordrecht, pp. 135-161.

- Almagro, M., López, J., Boix-Fayos, C., Albaladejo, J. and Martínez-Mena, M., 2010. Belowground carbon allocation patterns in a dry Mediterranean ecosystem: A comparison of two models. Soil Biology and Biochemistry, 42(9): 1549-1557.
- Almagro, M., López, J., Querejeta, J.I. and Martínez-Mena, M., 2009. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biology and Biochemistry, 41(3): 594-605.
- Almagro, M., Maestre, F.T., Martínez-López, J., Valencia, E. and Rey, A., 2015. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biology and Biochemistry, 90: 214-223.
- Almagro, M., Martínez-López, J., Maestre, F.T. and Rey, A., 2017. The contribution of photodegradation to litter decomposition in semiarid Mediterranean grasslands depends on its interaction with local humidity conditions, litter quality and position. Ecosystems, 20(3): 527-542.
- Almagro, M., Querejeta, J.I., Boix-Fayos, C. and Martínez-Mena, M., 2013. Links between vegetation patterns, soil C and N pools and respiration rate under three different land uses in a dry Mediterranean ecosystem. Journal of Soils and Sediments, 13(4): 641-653.
- An, S., Mentler, A., Mayer, H. and Blum, W.E., 2010. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 81: 226-233.
- Arce, M.I., Sánchez-Montoya, M.d.M., Vidal-Abarca, M.R., Suárez, M.L. and Gómez, R., 2014. Implications of flow intermittency on sediment nitrogen availability and processing rates in a Mediterranean headwater stream. Aquatic Sciences, 76(2): 173-186.
- Artigas, J., Romaní, A.M. and Sabater, S., 2008. Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 173(3): 255-264.
- Auble, G.T., Friedman, J.M. and Scott, M.L., 1994. Relating Riparian Vegetation to Present and Future Streamflows. Ecological Applications, 4(3): 544-554.
- Austin, A.T., Araujo, P.I. and Leva, P.E., 2009. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology, 90(9): 2642-2647.
- Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A. and Schaeffer, S.M., 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141(2): 221-235.
- Austin, B.J. and Strauss, E.A., 2011. Nitrification and denitrification response to varying periods of dessication and inundation in a western Kansas stream. Hydrobiologia, 658: 183-195.
- Axmanová, Š. and Rulík, M., 2005. DOC release from alder leaves and catkins during decomposition in a small lowland stream. Hydrobiology, 90(1): 33-41.
- Baker, M.A. and Vervier, P., 2004. Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshwater Biology, 49(2): 181-190.
- Baldwin, D.S. and Mitchell, A.M., 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regulated Rivers: Research & Management, 16: 457-467.
- Bätz, N., Verrecchia Eric, P. and Lane Stuart, N., 2014. The role of soil in vegetated gravelly river braid plains: more than just a passive response? Earth Surface Processes and Landforms, 40(2): 143-156.
- Belay-Tedla, A., Zhou, X., Su, B., Wan, S. and Luo, Y., 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology and Biochemistry, 41(1): 110-116.
- Belnap, J., Welter, J.R., Grimm, N.B., Barger, N. and Ludwig, J.A., 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology, 86(2): 298-307.
- Birch, H.F., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil, 10(1): 9-31.
- Blankinship, J.C., Fonte, S.J., Six, J. and Schimel, J.P., 2016. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma, 272: 39-50.

- Blume, H.P., Brümmer, G.W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K. and Wilke, B.M., 2016. Scheffer/schachtschabel soil science. Springer-Verlag Berlin Heidelberg.
- Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E., Calvo-Cases, A., Castillo, V. and Albaladejo, J., 2006. Measuring soil erosion by field plots: Understanding the sources of variation. Earth-Science Reviews, 78(3): 267-285.
- Boix-Fayos, C., Nadeu, E., Quiñonero, J.M., Martínez-Mena, M., Almagro, M. and de Vente, J., 2015. Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment. Hydrol. Earth Syst. Sci., 19(3): 1209-1223.
- Bombino, G., Boix-Fayos, C., Gurnell Angela, M., Tamburino, V., Zema Demetrio, A. and Zimbone Santo, M., 2013. Check dam influence on vegetation species diversity in mountain torrents of the Mediterranean environment. Ecohydrology, 7(2): 678-691.
- Bond-Lamberty, B. and Thomson, A., 2010. A global database of soil respiration data. Biogeosciences 7: 1915-1926.
- Borken, W. and Matzner, E., 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15(4): 808-824.
- Bradley, J.A., Anesio, A.M., Singarayer, J.S., Heath, M.R. and Arndt, S., 2015. SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems. Geoscientific Model Development, 8(10): 3441-3470.
- Bridge, J.S., 2003. Bedforms and sedimentary structures, Rivers and Floodplains. Forms, Processes, and Sedimentary Record. Blackwell Science, Oxford, UK, pp. 78-140.
- Bronick, C.J. and Lal, R., 2005. Soil structure and management: a review. Geoderma, 124(1): 3-22.
- Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N. and Zoppini, A., 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58: 216-234.
- Burrows, R.M., Rutlidge, H., Bond, N.R., Eberhard, S.M., Auhl, A., Andersen, M.S., Valdez, D.G. and Kennard, M.J., 2017. High rates of organic carbon processing in the hyporheic zone of intermittent streams. Scientific Reports, 7(1): 13198.
- Butterly, C.R., Bünemann, E.K., McNeill, A.M., Baldock, J.A. and Marschner, P., 2009. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology & Biogeochemistry, 41: 1406-1416.
- Butturini, A., Bernal, S., Hellin, C., Nin, E., Rivero, L., Sabater, S. and Sabater, F.C., 2003. Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream. Water Resources Research, 39(4): n/a-n/a.
- Cavanaugh, J.C., Richardson, W.B., Strauss, E.A. and Bartsch, L.A., 2006. Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River. River Research and Applications, 22(6): 651-666.
- Chenu, C., 1993. Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma, 56(1): 143-156.
- Chotte, J.-L., 2005. Importance of Microorganisms for Soil Aggregation. In: A. Varma and F. Buscot (Editors), Microorganisms in Soils: Roles in Genesis and Functions. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 107-119.
- Chróst, R.J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: R.J. Chróst (Editor), Microbial enzymes in aquatic environments. Springer, New York, USA, pp. 29-59.
- Corti, R. and Datry, T., 2012. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshwater Science, 31(4): 1187-1201.
- Corti, R., Datry, T., Drummond, L. and Larned, S., 2011. Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in a temporary river. Aquatic Sciences - Research Across Boundaries, 73: 537–550.
- Costigan, K.H., Jaeger, K.L., Goss, C.W., Fritz, K.M. and Goebel, P.C., 2016. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology, 9(7): 1141-1153.

- Costigan, K.H., Kennard, M.J., Leigh, C., Sauquet, E., Datry, T. and Boutlon, A.J., 2017. Flow regimes in intermittent rivers and ephemeral streams, in: Datry, T., Bonada, N., Boulton, A.J. (Eds.), Intermittent Rivers and Ephemeral Streams Ecology and Management. Academic Press, pp. 51-78.
- Datry, T., Foulquier, A., Corti, R., von Schiller, D., Tockner, K., Mendoza-Lera, C., Clément, J.C., Gessner, M.O., Moleón, M., Stubbington, R., Gücker, B., Albariño, R., Allen, D.C., Altermatt, F., Arce, M.I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M.L., Blanco-Libreros, J.F., Blessing, J.J., Boëchat, I.G., Boersma, K.S., Bogan, M.T., Bonada, N., Bond, N.R., Brintrup Barría, K.C., Bruder, A., Burrows, R.M., Cancellario, T., Canhoto, C., Carlson, S.M., Cauvy-Fraunié, S., Cid, N., Danger, M., de Freitas Terra, B., De Girolamo, A.M., de La Barra, E., del Campo, R., Diaz-Villanueva, V.D., Dyer, F., Elosegi, A., Faye, E., Febria, C., Four, B., Gafny, S., Ghate, S.D., Gómez, R., Gómez-Gener, L., Graça, M.A.S., Guareschi, S., Hoppeler, F., Hwan, J.L., Jones, J.I., Kubheka, S., Laini, A., Langhans, S.D., Leigh, C., Little, C.J., Lorenz, S., Marshall, J.C., Martín, E., McIntosh, A.R., Meyer, E.I., Miliša, M., Mlambo, M.C., Morais, M., Moya, N., Negus, P.M., Niyogi, D.K., Papatheodoulou, A., Pardo, I., Pařil, P., Pauls, S.U., Pešić, V., Polášek, M., Robinson, C.T., Rodríguez-Lozano, P., Rolls, R.J., Sánchez-Montoya, M.M., Savić, A., Shumilova, O., Sridhar, K.R., Steward, A.L., Storey, R., Taleb, A., Uzan, A., Vander Vorste, R., Waltham, N.J., Woelfle-Erskine, C., Zak, D., Zarfl, C. and Zoppini, A., 2018. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature Geoscience.
- Datry, T., Larned, S.T. and Tockner, K., 2014. Intermittent rivers: A challenge for freshwater ecology. BioScience, 64(3): 229-235.
- Datry, T., Singer, G., Sauquet, E., Jorda-Capdevila, D., Von Schiller, D., Subbington, R., Magand, C., Pařil, P., Miliša, M., Acuña, V., Alves, M.H., Augeard, B., Brunke, M., Cid, N., Csabai, Z., England, J., Froebrich, J., Koundouri, P., Lamouroux, N., Martí, E., Morais, M., Munné, A., Mutz, M., Pesic, V., Previšić, A., Reynaud, A., Robinson, C., Sadler, J., Skoulikidis, N., Terrier, B., Tockner, K., Vesely, D. and Zoppini, A., 2017. Science and management of intermittent rivers and ephemeral streams (SMIRES). Research Ideas and Outcomes, 3: e21774.
- de Vente, J. and Poesen, J., 2005. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Science Reviews, 71(1): 95-125.
- del Campo, R. and Gómez, R., 2016. Exposure of wood in floodplains affects its chemical quality and its subsequent breakdown in streams. Science of The Total Environment, 543: 652-661.
- Dieter, D., Herzog, C. and Hupfer, M., 2015. Effects of drying on phosphorus uptake in re-flooded lake sediments. Environ Sci Pollut Res, 22: 17065–17081.
- Doblas-Miranda, E., Sánchez-Piñero, F. and González-Megías, A., 2009. Different microhabitats affect soil macroinvertebrate assemblages in a Mediterranean arid ecosystem. Applied Soil Ecology, 41(3): 329-335.
- Doetterl, S., Six, J., Van Wesemael, B. and Van Oost, K., 2012. Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Global Change Biology, 18(7): 2218-2232.
- Dollar, E.S.J., James, C.S., Rogers, K.H. and Thoms, M.C., 2007. A framework for interdisciplinary understanding of rivers as ecosystems. Geomorphology, 89(1-2): 147-162.
- Droppo, I.G., Nackaerts, K., Walling, D.E. and Williams, N., 2005. Can flocs and water stable soil aggregates be differentiated within fluvial systems? Catena, 60(1): 1-18.
- Ebrahimi, A. and Or, D., 2016. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles upscaling an aggregate biophysical model. Global Change Biology, 22(9): 3141-3156.
- Ellery, W.N., Ellery, K., Rogers, K.H., Walker, B.H. and McCarthy, T.S., 1993. Vegetation, hydrology and sedimentation processes as determinants of channel form and dynamics in the northeastern Okavango Delta, Botswana. African Journal of Ecology, 31: 10-35.
- Elosegi, A., Díez, J. and Mutz, M., 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657(1): 199–215.
- FAO, 2006. World reference base for soil resources. A framewok for international classification, correlation and communication.

- Febria, C.M., Beddoes, P., Fulthorpe, R.R. and Williams, D.D., 2012. Bacterial community dynamics in the hyporheic zone of an intermittent stream. The Isme Journla, 6(5): 1078-88.
- Febria, C.M., Hosen, J.D., Crump, B.C., Palmer, M.A. and Williams, D.D., 2015. Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison. Frontiers in Microbiology, 6: 522.
- Fellbaum, C.R., Mensah, J.A., Cloos, A.J., Strahan, G.E., Pfeffer, P.E., Kiers, E.T. and Bücking, H., 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203(2): 646-656.
- Fellman, J.B., Petrone, K.C. and Grierson, P.F., 2013. Leaf litter age, chemical quality, and photodegradation control the fate of leachate dissolved organic matter in a dryland river. Journal of Arid Environments, 89: 30–37.
- Fenn, M.E. and Poth, M.A., 2004. Monitoring nitrogen deposition in throughfall using ion exchange resin columns: a field test in the San Bernardino Mountains. Journal of Environmental Quality, 33: 2007-2014.
- Fierer, N. and Schimel, J.P., 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34(6): 777-787.
- Fierer, N., Schimel, J.P. and Holden, P.A., 2003. Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology, 45: 63-71.
- Fisher, S.G., Grimm, N.B., Martí, E., Holmes, R.M. and Jones, J.J.B., 1998. Material spiraling in stream corridors: A telescoping ecosystem model. Ecosystems, 1(1): 19-34.
- Flemming, H.-C. and Wingender, J., 2010. The biofilm matrix. Nat Rev Micro, 8(9): 623-633.
- Follet, R.F., E., V.G., M., K.J. and Vogel, K.P., 2009. No-till corn afterbromegrass: Effect on soil carbon and soil aggregates. Agronomy Journal, 101: 261–268.
- Fossati, J., Pautou, G. and Peltier, J.-P., 1999. Water as resource and disturbance for wadi vegetation in a hyperarid area (Wadi Sannur, Eastern Desert, Egypt). Journal of Arid Environments, 43(1): 63 - 77.
- Franzluebbers, A.J., 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil & Tillage Research, 66: 197-205.
- Fromin, N., Pinay, G., Montuelle, B., Landais, D., Ourcival, J.M., Joffre, R. and Lensi, R., 2010. Impact of seasonal sediment desiccation and rewetting on microbial processes involved in greenhouse gas emissions. Ecohydrology, 3(3): 339-348.
- Frossard, A., Ramond, J.-B., Seely, M. and Cowan, D.A., 2015. Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Scientific Reports, 5: 12263.
- Gallo, E.L., Lohse, K.A., Ferlin, C.M., Meixner, T. and Brooks, P.D., 2014. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry, 121(1): 189-207.
- Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M. and Ball, A.S., 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69: 1800–1809.
- Gómez-Gener, L., Obrador, B., Marcé, R., Acuña, V., Catalán, N., Casas-Ruiz, J.P., Sabater, S., Muñoz, I. and von Schiller, D., 2016. When water vanishes: magnitude and regulation of carbon dioxide emissions from dry temporary streams. Ecosystems, 19(4): 710-723.
- Gómez-Gener, L., Obrador, B., von Schiller, D., Marcé, R., Casas-Ruiz, J.P., Proia, L., Acuña, V., Catalán, N., Muñoz, I. and Koschorreck, M., 2015. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry, 125(3): 409-426.
- Gómez, R., Arce, M.I., Sánchez, J.J. and del Mar Sánchez-Montoya, M., 2012. The effects of drying on sediment nitrogen content in a Mediterranean intermittent stream: a microcosms study. Hydrobiologia, 679(1): 43-59.
- Gordon, N.D., McMahon, T.A., Finlayson, B.L., Gippel, C.J. and Nathan, R.J., 2004. Stream hydrology: An introduction for ecologists. John Wiley & Sons, Ltd, West Sussex, UK.
- Gregorich, E.G., Beare, M.H., Stoklas, U. and St-Georges, P., 2003. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma, 113(3–4): 237-252.
- Griffiths, B.S. and Philippot, L., 2013. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37(2): 112-129.

- Griffiths, E. and Birch, H.F., 1961. Microbiological changes in freshly moistened soil. Nature, 189: 424.
- Grimm, N.B., Gergel, S.E., McDowell, W.H., Boyer, E.W., Dent, C.L., Groffman, P., Hart, S.C., Harvey, J., Johnston, C., Mayorga, E., McClain, M.E. and Pinay, G., 2003. Merging aquatic and terrestrial perspectives of nutrient biogeochemistry. Oecologia, 137(4): 485-501.
- Groffman, P.M. and Bohlen, P.J., 1999. Soil and Sediment Biodiversity: Cross-system comparisons and large-scale effects. BioScience, 49(2): 139-148.
- Gutiérrez, J.L. and Jones, C.G., 2006. Physical Ecosystem Engineers as Agents of Biogeochemical Heterogeneity. BioScience, 56(3): 227-236.
- Haregeweyn, N., Poesen, J., Deckers, J., Nyssen, J., Haile, M., Govers, G., Verstraeten, G. and Moeyersons, J., 2008. Sediment-bound nutrient export from micro-dam catchments in Northern Ethiopia. Land Degradation & Development, 19(2): 136-152.
- Harms, T.K. and Grimm, N.B., 2012. Responses of trace gases to hydrologic pulses in desert floodplains. Journal of Geophysical Research: Biogeosciences, 117(G1).
- Harms, T.K., Wentz, E.A. and Grimm, N.B., 2009. Spatial Heterogeneity of Denitrification in Semi-Arid Floodplains. Ecosystems, 12(1): 129-143.
- Hillel, D., 2003. Soil sructure and aggregation, Introduction to environmental soil physics (First). Academic Press, Burlington, pp. 73-89.
- Hoffmann, T., Mudd, S.M., van Oost, K., Verstraeten, G., Erkens, G., Lang, A., Middelkoop, H., Boyle, J., Kaplan, J.O., Willenbring, J. and Aalto, R., 2013. Humans and the missing C-sink: erosion and burial of soil carbon through time. Earth Surface Dynamics, 1: 45-52.
- Huggett, R.J., 1998. Soil chronosequences, soil development, and soil evolution: a critical review. Catena, 32(3): 155-172.
- Jacinthe, P.A., Groffman, P.M., Gold, A.J. and Mosier, A., 1998. Patchiness in microbial nitrogen transformations in groundwater in a riparian forest. Journal of Environmental Quality, 27(1): 156-164.
- Jaeger, L., Sutfin, N.A., Tooth, S., Michaelides, K. and Michael, S., 2017. Geomorphology and sediment regimes of intermittent rivers and ephemeral streams, in: Datry, T., Bonada, N., Boulton, A.J. (Eds.), Intermittent Rivers and Ephemeral Streams Ecology and Management. Academic Press, pp. 21-49.
- Johnson, M.J., Lee, K.Y. and Scow, K.M., 2003. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma, 114: 279–303.
- Jones, A., Montanarella, L. and Jones, R., 2005. Soil atlas of Europe. European Commission.
- Kallenbach, C.M., Frey, S.D. and Grandy, A.S., 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7: 13630.
- Kay, B.D., 1998. Soil structure and organic carbon: A review. In: R. Lal, J.M. Kimble, R.F. Follett and B.A. Stewart (Editors), Soil processes and the carbon cycle. CRC Press, Boca Raton, Florida, USA, pp. 169-197.
- Keitel, J., Zak, D. and Hupfer, M., 2016. Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization. Environmental Science and Pollution Research International, 23(7): 6883-6894.
- Kemp, P.R., Reynolds, J.F., Virginia, R.A. and Whitford, W.G., 2003. Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 53(1): 21-39.
- Khalid, R.A., 1989. Removal of nitrogen and phosphorus by overland flow, Proceeding, National Seminar on Overland Flow Technology for Municipal Wastewater. U.S. Environmental Protection Agency.
- Kim, D.G., Vargas, R., Bond-Lamberty, B. and Turetsky, M.R., 2012. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences, 9(7): 2459-2483.
- Kinsman-Costello, L.E., Hamilton, S.K., O'Brien, J.M. and Lennon, J.T., 2016. Phosphorus release from the drying and reflooding of diverse shallow sediments. Biogeochemistry, 130(1): 159-176.

- Kotroczó, Z., Veres, Z., Fekete, I., Krakomperger, Z., Tóth, J.A., Lajtha, K. and Tóthmérész, B., 2014. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology and Biochemistry, 70: 237-243.
- Kusnierz, P. and Sivers, E., 2018. How important is geology in evaluating stream habitat?, 18, 1176-1184 pp.
- Kuzyakov, Y., 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9): 1363-1371.
- Kuzyakov, Y. and Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83(Supplement C): 184-199.
- Kuzyakov, Y., Friedel, J.K. and Stahr, K., 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32(11): 1485 1498.
- Langhans, S., TIEGS, S.D., UEHLINGER, U. and , K.T., 2006. Environmental heterogeneity controls organic-matter dynamics in river-floodplain ecosystems. Polish Journal of Ecology, Vol. 54(nr 4): 675-680.
- Langhans, S.D., Tiegs, S.D., Gessner, M.O. and Tockner, K., 2008. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquatic Sciences, 70(3): 337-346.
- Larned, S.T., Datry, T., Arscott, D.B. and Tockner, K., 2010. Emerging concepts in temporary-river ecology. Freshwater Biology, 55(4): 717-738.
- Lee, H., Rahn, T. and Throop, H., 2012. An accounting of C-based trace gas release during abiotic plant litter degradation. Global Change Biology, 18(3): 1185-1195.
- Leigh, C., Boulton, A.J., Courtwright, J.L., Fritz, K., May, C.L., Walker, R.H. and Datry, T., 2016. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology, 61(8): 1181-1199.
- Lennon, J.T., Aanderud, Z.T., Lehmkuhl, B.K. and Schoolmaster, D.R., 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93(8): 1867-1879.
- Li, B., Gao, J., Wang, X., Ma, L., Cui, Q. and Vest, M., 2016. Effects of biological soil crusts on water infiltration and evaporation Yanchi Ningxia, Maowusu Desert, China. International Journal of Sediment Research, 31(4): 311-323.
- Lundquist, E.J., Scow, K.M., Jackson, L.E., Uesugi, S.L. and Johnson, C.R., 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology and Biochemistry, 31: 1661–1675.
- Manzoni, S., Porporato, A. and D'Odorico, P., 2006. Modeling of carbon and nitrogen cycling in arid and semiarid ecosystems. In: P. D'Odorico and A. Porporato (Editors), Dryland ecohydrology. Springer Netherlands, Dordrecht, pp. 183-199.
- Mardhiah, U., Caruso, T., Gurnell, A. and Rillig, M.C., 2014. Just a matter of time: Fungi and roots significantly and rapidly aggregate soil over four decades along the Tagliamento River, NE Italy. Soil Biology and Biochemistry, 75(Supplement C): 133-142.
- Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I.A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D. and Peñuelas, J., 2017. Global patterns of phosphatase activity in natural soils. Scientific Reports, 7: 1337.
- Marschner, P., Kandeler, E. and Marschner, B., 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 35: 453–461.
- Marxsen, J., Zoppini, A. and Wilczek, S., 2010. Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiology Ecology, 71(3): 374-386.
- McBride, J.R. and Strahan, J., 1984. Establishment and survival of woody riparian species on gravel bars of an intermittent stream. The American Midland Naturalist, 112(2): 235-245.
- McClain, M.E., Boyer, E.W., Dent, C.L., Gergel, S.E., Grimm, N.B., Groffman, P.M., Hart, S.C., Harvey, J.W., Johnston, C.A., Mayorga, E., McDowell, W.H. and Pinay, G., 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4): 301-312.
- McIntyre, R., Adams, M.A., Ford, D.J. and Grierson, P.F., 2009. Rewetting and litter addition influence mineralization and microbial communities in soils from a semi-arid intermittent stream. Soil Biology and Biochemistry, 41: 92-101.

- Merbt, S.N., Proia, L., Prosser, J.I., Martí, E., Casamayor, E.O. and von Schiller, D., 2016. Stream drying drives microbial ammonia oxidation and first-flush nitrate export. Ecology, 97(9): 2192-2198.
- Mering, C.v., Hugenholtz, P., Raes, J., Tringe, S.G., Doerks, T., Jensen, L.J., Ward, N. and Bork, P., 2007. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science, 315: 1126–1130.
- Michaletz, S.T., Cheng, D., Kerkhoff, A.J. and Enquist, B.J., 2014. Convergence of terrestrial plant production across global climate gradients. Nature, 512: 39.
- Miltner, A., Bombach, P., Schmidt-Brücken, B. and Kästner, M., 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry, 111(1): 41-55.
- Minasny, B. and McBratney, A.B., 2017. Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69: 39-47.
- Monard, C., Gantner, S., Bertilsson, S., Hallin, S. and Stenlid, J., 2016. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Scientific Reports, 6: 37719.
- Mora-Gómez, J., Elosegi, A., Mas-Martí, E. and Romaní, A.M., 2015. Factors controlling seasonality in leaf-litter breakdown in a Mediterranean stream. Freshwater Science, 34(4): 1245-1258.
- Morandi, B., Piégay, H., Lamouroux, N. and Vaudor, L., 2014. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects. Journal of Environmental Management, 137: 178-188.
- Mori, N., Simčič, T., Brancelj, A., Robinson, C.T. and Doering, M., 2017. Spatiotemporal heterogeneity of actual and potential respiration in two contrasting floodplains. Hydrological Processes, 31(14): 2622--2636.
- Nadelhoffer, K.J., Raich, J.W. and Aber, J.D., 1998. A global trend in belowground carbon allocation: comment. Ecology, 79(5): 1822-1825.
- Nadeu, E., 2013. Soil erosion and organic carbon mobilization at the catchment scale: factors, processes and impact on the carbon balance, University of Murcia, Murcia.
- Nadeu, E., Berhe, A.A., de Vente, J. and Boix-Fayos, C., 2012. Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences, 9(3): 1099-1111.
- Nadeu, E., de Vente, J., Martínez-Mena, M. and Boix-Fayos, C., 2011. Exploring particle size distribution and organic carbon pools mobilized by different erosion processes at the catchment scale. Journal of Soils and Sediments, 11(4): 667-678.
- Nannipieri, P. and Eldor, P., 2009. The chemical and functional characterization of soil N and its biotic components. Soil Biology and Biochemistry, 41(12): 2357-2369.
- Newbold, J.D., Elwood, J.W., O'Neill, R.V. and Winkle, W.V., 1981. Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences, 38(7): 860-863.
- Ni, J., Zhang, X.S. and Jonathan, M.O.S., 2001. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Ann. For. Sci., 58: 351-384.
- O'Neill, R.V., Deangelis, D.L., Waide, J.B. and Allen, G.E., 1986. A hierarchical concept of ecosystems. Princeton University Press, Princeton, New Jersey, USA.
- Or, D., Smets, B.F., Wraith, J.M., Dechesne, A. and Friedman, S.P., 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Advances in Water Resources, 30(6–7): 1505-1527.
- Placella, S.A., Brodie, E.L. and Firestone, M.K., 2012. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proceedings of the National Academy of Sciences, 109(27): 10931-10936.
- Poff, N.L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc., 16: 391–409.
- Pohlon, E.A., Fandino, O. and Marxsen, J., 2013. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS One 8(12): e83365.
- Raich, J.W., Potter, C.S. and Bhagawati, D., 2002. Interannual variability in global soil respiration, 1980–94. Global Change Biology, 8(8): 800-812.

- Raich, J.W. and Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44(2): 81-99.
- Ratliff, T.J. and Fisk, M.C., 2016. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry, 94: 61-69.
- Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P. and Guth, P., 2013. Global carbon dioxide emissions from inland waters. Nature, 503(7476): 355-359.
- Rhoton, F.E., Emmerich, W.E., Goodrich, D.C., Miller, S.N. and McChcsney, D.S., 2006. Soil Geomorphological Characteristics of a Semiarid Watershed: Influence on Carbon Distribution and Transport. Soil Science Society of America Journal, 70(5): 1532-1540.
- Riedl, H., Marczak, L., McLenaghan, N. and Hoover, T.M., 2013. The role of stranding and inundation on leaf litter decomposition in headwater streams. Riparian Ecology and Conservation, 1: 3-10.
- Rillig, M.C., Muller, L.A.H. and Lehmann, A., 2017. Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11: 1943.
- Risse-Buhl, U., Mendoza-Lera, C., Norf, H., Perez, J., Pozo, J. and Schlief, J., 2017. Contrasting habitats but comparable microbial decomposition in the benthic and hyporheic zone. Science of the Total Environment, 605-606: 683-691.
- Robertson, G.P. and Groffman, P., 2015. Nitrogen transformations in soil. In: E.A. Paul (Editor), Soil microbiology, ecology and biochemistry. Academic Press, Burlington, Massachusetts, USA, pp. 421-446.
- Romaní, A., Chauvet, E., Febria, C., Mora, J., Risse-Buhl, U., Timoner, X., Weitere, M. and Zeglin, L., 2017. The Biota of Intermittent Rivers and Ephemeral Streams: Prokaryotes, Fungi, and Protozoans. In: T. Datry, N. Bonada and A. Boulton (Editors), Intermittent Rivers and Ephemeral Streams. Academic Press, Burlington, pp. 161-188.
- Romaní, A.M., Amalfitano, S., Artigas, J., Fazi, S., Sabater, S., Timoner, X., Ylla, I. and Zoppini, A., 2013. Microbial biofilm structure and organic matter use in mediterranean streams. Hydrobiologia, 719(1): 43-58.
- Romaní, A.M., Fischer, H., Mille-Lindblom, C. and Tranvik, L.J., 2006. Interactions of bacteria and fungi on decomposing litter: Differential extracellular enzyme activities. Ecology, 87(10): 2559-2569.
- Rosenzweig, R., Shavit, U. and Furman, A., 2012. Water retention curves of biofilm-affected soils using xanthan as an analogue. Soil Science Society of America Journal, 76: 61-69.
- Rousk, J. and Bengtson, P., 2014. Microbial regulation of global biogeochemical cycles. Frontiers in Microbiology, 5: 103.
- Ruiz-González, C., Niño-García, J.P. and del Giorgio, P.A., 2015. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecology Letters, 18(11): 1198-1206.
- Sabater, S., Timoner, X., Bornette, G., De Wilde, M., Stromberg, J.C., Stella, J.C., Bonada, N. and Boulton, A., 2017. The biota of intermittent rivers and ephemeral streams: Algae and vascular plants. In: D. Thibault, B. Núria and B. Andrew (Editors), Intermittent rivers and ephemeral streams: Ecology and management. Academic Press, pp. 189-216.
- Sabater, S., Timoner, X., Borrego, C. and Acuña, V., 2016. Stream biofilm responses to flow intermittency: from cells to ecosystems. Frontiers in Environmental Science, 4: 14.
- Sanchez-Montoya, M.M., Moleon, M. and Sanchez-Zapata, J.A., 2017. The biota of intermittent and ephemeral rivers: Amphibians, reptiles, birds, and mammals, Intermittent rivers and ephemeral streams: Ecology and management.
- Schade, J.D., Fisher, S.G., Grimm, N.B. and Seddon, J.A., 2001. The influence of a riparian shrub on nitrogen cycling in a sonoran desert stream. Ecology, 82(12): 3363-3376.
- Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clark, D.B., Dankers, R., Eisner, S., Fekete, B.M., Colón-González, F.J., Gosling, S.N., Kim, H., Liu, X., Masaki, Y., Portmann, F.T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L. and Kabat, P., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9): 3245-3250.

Schiemer, F., 1999. Conservation of biodiversity in floodplain. Large Rivers, 11(3): 423-438.

- Schimel, J., Balser, T.C. and Wallenstein, M., 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6): 1386-1394.
- Schimel, J. and Schaeffer, S., 2012. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3: 348.
- Schlief, J. and Mutz, M., 2011. Leaf decay processes during and after a supra-seasonal hydrological drought in a temperate lowland stream. International Review of Hydrobiology, 96(6): 633-655.
- Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. and Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478(7367): 49-56.
- Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S. and Ducharne, A.C.G., 2017. Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophysical Research Letters, 44(6): 2773-2781.
- Scott, R.L., Huxman, T.E., Barron-Gafford, G.A., Darrel, J.G., Young, J.M. and Hamerlynck, E.P., 2013. When vegetation change alters ecosystem water availability. Global Change Biology, 20(7): 2198-2210.
- Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnology and Oceanography, 33(4part2): 702-724.
- Silver, W.L. and Miya, R.K., 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129(3): 407-419.
- Sinsabaugh, R.L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42(3): 391–404.
- Sinsabaugh, R.L. and Follstad Shah, J.J., 2011. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry, 102(1-3): 31-43.
- Sinsabaugh, R.L., Follstad Shah, J.J., Hill, B.H. and Elonen, C.M., 2012. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils. Biogeochemistry, 111(1): 455-467.
- Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak, D.R. and Zeglin, L.H., 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11): 1252-1264.
- Skoulikidis, N. and Amaxidis, Y., 2009. Origin and dynamics of dissolved and particulate nutrients in a minimally disturbed Mediterranean river with intermittent flow. Journal of Hydrology, 373(1): 218-229.
- Skoulikidis, N.T., Sabater, S., Datry, T., Morais, M.M., Buffagni, A., Dorflinger, G., Zogaris, S., Del Mar Sanchez-Montoya, M., Bonada, N., Kalogianni, E., Rosado, J., Vardakas, L., De Girolamo, A.M. and Tockner, K., 2017a. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Science of the Total Environment, 577: 1-18.
- Skoulikidis, N.T., Vardakas, L., Amaxidis, Y. and Michalopoulos, P., 2017b. Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non-perennial river reach. Science of the Total Environment, 575: 378-389.
- Smith, J.C., Galy, A., Hovius, N., Tye, A.M., Turowski, J.M. and Schleppi, P., 2013. Runoff-driven export of particulate organic carbon from soil in temperate forested uplands. Earth and Planetary Science Letters, 365: 198-208.
- Smits, K.M., Ngo, V.V., Cihan, A., Sakaki, T. and Illangasekare, T.H., 2012. An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions. Water Resources Research, 48(12): n/a-n/a.
- Soil Survey Staff, 2014. Keys to soil taxonomy. USDA-Natural Resources Conservation Service, Washington, DC.

- Sollins, P., Homann, P. and Caldwell, B.A., 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74(1): 65-105.
- Stacy, E.M., Hart, S.C., Hunsaker, C.T., Johnson, D.W. and Berhe, A.A., 2015. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration. Biogeosciences, 12(16): 4861-4874.
- Stanley, E.H., Fisher, S.G. and Grimm, N.B., 1997. Ecosystem Expansion and Contraction in Streams. BioScience, 47(7): 427-435.
- Stegen, J.C., Fredrickson, J.K., Wilkins, M.J., Konopka, A.E., Nelson, W.C., Arntzen, E.V., Chrisler, W.B., Chu, R.K., Danczak, R.E., Fansler, S.J., Kennedy, D.W., Resch, C.T. and Tfaily, M., 2016a. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications, 7: 11237.
- Stegen, J.C., Konopka, A., McKinley, J.P., Murray, C., Lin, X., Miller, M.D., Kennedy, D.W., Miller, E.A., Resch, C.T. and Fredrickson, J.K., 2016b. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies. Scientific Reports, 6: 30553.
- Steward, A.L., von Schiller, D., Tockner, K., Marshall, J.C. and Bunn, S.E., 2012. When the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 10(4): 202-209.
- Stromberg, J.C., Setaro, D.L., Gallo, E.L., Lohse, K.A. and Meixner, T., 2017. Riparian vegetation of ephemeral streams. Journal of Arid Environments, 138: 27-37.
- Swift, M.J., Heal, O.W. and Anderson, J.M., 1979. Decomposition in terrestrial ecosystems. Studies in ecology, 5. Blackwell Scientific, Oxford, 372 pp.
- Thorp, J.H., Thoms, M.C. and Delong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications, 22: 123-147.
- Timoner, X., AcuÑA, V., Von Schiller, D. and Sabater, S., 2012. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshwater Biology, 57(8): 1565-1578.
- Timoner, X., Borrego, C.M., Acuña, V. and Sabater, S., 2014. The dynamics of biofilm bacterial communities is driven by flow wax and wane in a temporary stream. Limnology and Oceanography, 59(6): 2057-2067.
- Totsche, K.U., Amelung, W., Gerzabek Martin, H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N. and Kögel-Knabner, I., 2017. Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1): 104-136.
- Trulleyová, Š., Rulík, M. and Popelka, J., 2003. Stream and interstitial water DOC of a gravel bar (Sitka stream, Czech Republic): characteristics, dynamics and presumable origin. Archiv für Hydrobiologie, 158(3): 407-420.
- Turner, B.L., Frossard, E. and Baldwin, D.S., 2005. Organic phosphorus in the environment. CAB International.
- Tzoraki, O., Nikolaidis, N.P., Amaxidis, Y. and Skoulikidis, N.T., 2007. In-stream biogeochemical processes of a temporary river. Environmental Science & Technology, 41(4): 1225-1231.
- Unger, S., Friede, M., Hundacker, J., Volkmar, K. and Beyschlag, W., 2016. Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species. Plant and Soil, 407(1): 279-292.
- Uys, M.C. and O'Keeffe, J.H., 1997. Simple Words and Fuzzy Zones: Early Directions for Temporary River Research in South Africa. Environmental Management, 21(4): 517-531.
- Valett, H.M., Baker, M.A., Morrice, J.A., Crawford, C.S., Molles, M.C., Dahm, C.N., Moyer, D.L., Thibault, J.R. and Ellis Lisa, M., 2005. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology, 86(1): 220-234.
- Verboom, W.H. and Pate, J.S., 2006. Bioengineering of soil profiles in semiarid ecosystems: the 'phytotarium' concept. A review. Plant and Soil, 289(1): 71-102.
- Verchot, L.V., Dutaur, L., Shepherd, K.D. and Albrecht, A., 2011. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma, 161(3–4): 182-193.
- von Schiller, D., Graeber, D., Ribot, M., Timoner, X., Acuña, V., Martí, E., Sabater, S. and Tockner, K., 2015. Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry, 123(3): 429-446.

- von Schiller, D., Marcé, R., Obrador, B., Casas, L.G.J.P., Acuña, V. and Koschorreck, M., 2014. Carbon dioxide emissions from dry watercourses. Inland Waters, 4(4): 377-382.
- Vos, M., Wolf, A.B., Jennings, S.J. and Kowalchuk, G.A., 2013. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 37(6): 936-954.
- Wagener, S.M., Oswood, M.W. and Schimel, J.P.C., 1998. Rivers and soils: Parallels in carbon and nutrient processing. BioScience, 48(2): 104-108.
- Wang, Y.P., Law, R.M. and Pak, B., 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7(7): 2261-2282.
- Ward, J.V., 1998. Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83(3): 269-278.
- Ward, J.V., Bretschko, G., Brunke, M., Danielopol, D., Gibert, J., Gonser, T. and Hildrew, A.G., 1998. The boundaries of river systems: the metazoan perspective. Freshwater Biology, 40(3): 531-569.
- Webster, J.R. and Patten, B.C.C., 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs, 49(1): 51-72.
- Weil, R.R. and Brady, N.C., 2016. The nature and properties of soils. Pearson.
- Williams, D.D., 2006. The biology of temporary waters. Oxford University Press.
- Williams, W.D., 1988. Limnological imbalances: an antipodean viewpoint. Freshwater Biology, 20(3): 407-420.
- Ylla, I., Sanpera-Calbet, I., Vázquez, E., Romaní, A.M., Muñoz, I., Butturini, A. and Sabater, S., 2010. Organic matter availability during pre- and post-drought periods in a Mediterranean stream. Hydrobiologia, 657(1): 217-232.
- Zeglin, L.H., Bottomley, P.J., Jumpponen, A., Rice, C.W., Arango, M., Lindsley, A., McGowan, A., Mfombep, P. and Myrold, D.D., 2013. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology, 94(10): 2334-2345.
- Zoppini, A., Ademollo, N., Amalfitano, S., Casella, P., Patrolecco, L. and Polesello, S., 2014. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions. Science of the Total Environment, 484: 74-83.
- Zoppini, A. and Marxsen, J., 2011. Importance of Extracellular Enzymes for Biogeochemical Processes in Temporary River Sediments during Fluctuating Dry–Wet Conditions. In: G. Shukla and A. Varma (Editors), Soil Enzymology. Springer Berlin Heide Iberg, Soil Biology, pp. 103-117.
- Zribi, W., Aragüés, R., Medina, E. and Faci, J.M., 2015. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil and Tillage Research, 148(Supplement C): 40-45.